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Abstract: As edge computing gains attention across various domains, the demand for lightweight deep learning
models capable of running efficiently on resource-constrained edge devices has surged. This survey investigates the
landscape of lightweight deep learning models tailored for edge computing environments. The survey explores vari-
ous model compression techniques used to design and optimize deep learning models for edge deployment, including
model quantization, pruning, and knowledge distillation. Emphasis is placed on strategies to reduce model size, com-
putational complexity, and memory footprint while maintaining satisfactory performance levels. Additionally, the
study examines the performances of these techniques on three real-life datasets evaluating lightweight deep learning
models, highlighting the importance of balanced datasets representative of edge device deployment scenarios. Fur-
thermore, this survey provides a comprehensive overview of the current state of lightweight deep learning models
for edge devices, offering insights into design considerations, optimization techniques, and performance evaluation
methodologies. The findings show that most of the compression techniques suffer from performance degradation,
proving the existence of a trade-off between compression and performance. Therefore, we proposed a hybrid lossless-
compressed model by combining pruning quantization, and knowledge distillation, to reduce parameters and weights,
resulting in a lightweight model. The proposed model is three times smaller than the vanilla CNNmodel and achieved
a state-of-the-art accuracy of 97% after compression, which shows the effectiveness of our approach. These results
will serve as a valuable resource for researchers and practitioners aiming to develop efficient and scalable deep learn-
ing solutions for edge computing applications.
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1. Introduction
Deep learning (DL) has revolutionized various fields, including computer vision, natural language processing,

and signal processing. However, the computational complexity and resource demands of traditional DL models often
limit their deployment on edge devices [1]. The proliferation of edge computing has revolutionized the way data
is processed, analyzed, and utilized at the network’s periphery, closer to the data source. This paradigm shift has
sparked a growing interest in deploying deep learning models directly onto edge devices, such as smartphones, IoT
devices, and edge servers, enabling real-time inference and decision-making capabilities [2].

Edge devices are resource-constrained systems like smartphones, wearable sensors, and Internet-of-Things (IoT)
gadgets, typically characterized by limited processing power, memory, and battery life [3]. While cloud computing
can handle the heavy lifting for powerful models, it introduces latency, privacy concerns, and reliance on constant
network connectivity [4].

However, the deployment of traditional deep learning models on edge devices presents significant challenges.
These challenges stem from the resource limitations inherent in edge computing environments. Consequently, there
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is a pressing need for lightweight deep-learning models that can operate efficiently on edge devices while delivering
satisfactory performance [5,6].

In response to this need, researchers have developed a diverse array of techniques to design and optimize deep
learning models specifically for edge deployment. These techniques encompass model quantization, pruning, knowl-
edge distillation, and architecture design, among others, with the overarching goal of reducing the model size and
computational complexity while preserving accuracy and performance [7,8]. Therefore, lightweight deep learning
models have emerged as a crucial area of research, aiming to bridge the gap between powerful, complex models and
the limited capabilities of edge devices. These models achieve comparable accuracy with traditional models with a
slight drop in performance, while significantly reducing computational cost, memory footprint, and power consump-
tion, making them suitable for a wide range of real-time applications on edge devices [9].

Lightweight models are based on the model compression techniques which have proven to be effective strategies
to reduce the size and computational complexity of deep learning models while maintaining an acceptable level of
performance. Model compression involves the application of various techniques to reduce the number of parameters
and the overall memory footprint of a deep-learning model [10].

This survey provides a comprehensive overview of lightweight deep-learning models for edge devices. We delve
into various design strategies and optimization techniques employed to compress and accelerate deep learning models,
analyze their strengths and limitations, and showcase their diverse applications on the edge. Furthermore, we discuss
open challenges and promising future directions in this rapidly evolving field.

Moreover, this research investigates the issue of performance degradation observed in the majority of deep-
learning model compression techniques by evaluating the efficacy of these techniques across three distinct real-world
datasets for benchmarking. Ultimately, it introduces a hybrid lossless model, which integrates pruning, quantization,
and knowledge distillation techniques to address this challenge effectively.

2. Techniques for Developing Lightweight Models
Many well-known methods in the field of model compression have been made possible by the growing interest

in creating compressed deep learning models that can retain the accuracy of traditional models while lowering com-
plexities. Each of these techniques presents distinct advantages and trade-offs, contributing to the diverse landscape
of approaches for compressing deep learning models. We offer a carefully thought-out and creative taxonomy. Our
suggested taxonomy offers an organized framework for comprehending the variety of lightweight model approaches
for edge devices, as shown in Figure 1. This investigation includes a detailed analysis of several well-known methods,
including quantization, pruning, knowledge distillation, and Architecture Design.

Figure 1. Taxonomy of Lightweight Model Techniques.

2.1. Prunning
Network pruning is a major technique that has been successfully used to reduce redundant parameters in deep

neural network models [11]. The technique works by removing unnecessary connections, thus reducing the number
of parameters and computation costs [12]. The basic idea behind network pruning is that those redundant parameters
provide less contribution to the model performance. Therefore, by removing the redundant parameters, the model
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size, memory footprints, and computational requirements can be reduced without affecting the model performance.
Several architectures and architecture-specific pruning methods have been proposed in recent years, as found in the
work of [13,14]. But structured and unstructured pruning are the two major classifications of network pruning [15].

The concept of network pruning is depicted in Figure 2. which described how redundant weights can be removed
from the entire neural network.

Figure 2. Concept of network pruning.

2.1.1. Structured Prunning
Structured pruning is aimed at reducing the size of deep learning models by identifying and removing entire struc-

tured components, such as channels, filters, or neurons, rather than individual parameters [16]. Unlike unstructured
pruning, which removes individual parameters such as layers regardless of their location within the model, structured
pruning preserves the model’s original structure, enabling more efficient implementation and deployment [17].

One of the key advantages of structured pruning is its compatibility with hardware accelerators and deployment
on resource-constrained edge devices [18]. By preserving the structured nature of the model, structured pruning
facilitates streamlined inference, as hardware accelerators can exploit the sparsity patterns induced by pruning to
optimize memory access and computational efficiency [19].

A variety of structured pruning was used to successfully compress the AlexNet model by a factor of 9 without
sacrificing accuracy. The resulting pruned model has a significantly reduced memory size and small computational
complexity while maintaining a comparable level of performance to the original model [20].

Structured pruning techniques can be applied independently or in combination with other compression methods,
such as quantization or knowledge distillation, to further enhance model compression and efficiency [21]. More-
over, recent advancements in structured pruning algorithms have led to more sophisticated pruning strategies, such
as iterative pruning with retraining and network slimming, enabling deeper model compression with minimal perfor-
mance degradation [22]. Overall, structured pruning offers a promising approach for developing lightweight deep
learning models tailored for deployment on edge devices, facilitating efficient inference and real-time processing in
resource-constrained environments. By exploiting the structured nature of deep learning models, structured pruning
enables substantial model compression without compromising predictive performance, paving the way for scalable
and energy-efficient edge computing solutions [23].

2.1.2. Unstructured Pruning
Unstructured pruning simplifies a network by removing individual weights or neurons based on their importance,

typically using a threshold to set insignificant ones to zero [24]. While this approach directly reduces the model size, it
disregards the inherent structure of the network, creating an irregular and sparse model. This irregularity complicates
both storage and computation of the pruned model, often requiring specialized techniques for efficient handling [25].
Additionally, unstructured pruning frequently necessitates substantial retraining to recover the lost accuracy, which
can be particularly resource-intensive on edge devices with limited processing power [26].

One of the main advantages of unstructured pruning is its flexibility and simplicity in implementation. Since it op-
erates at the level of individual parameters, unstructured pruning does not require modifying the model’s architecture
or structure, making it compatible with a wide range of deep learning models and frameworks [27].

Despite its effectiveness in reducing model size, unstructured pruning presents challenges in deployment, partic-
ularly on hardware accelerators or edge devices with limited memory and computational resources. The irregular
sparsity patterns induced by unstructured pruning can lead to suboptimal memory access patterns and inefficient
utilization of hardware resources.

Generally, Pruning has been widely used in developing lightweight models for edge devices. In Table 1, we
present the recent literature on pruning-based lightweight models.
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Table 1. Pruning-based Lightweight Models for Edge devices.

Methods Pruning Type Performance
Pruning via geometric mean [28] Structured No Performance drop

Pruned layer reconstruction [29] Structured 5.13× speed-up with only 0.65% top-5 accu-
racy drop

Lightweight Bi-LSTM [30] Structured 36% pruning ratio and improve accuracy by
3%

Block removal strategy [31] Unstructured Achieved 5.95x compression rate with 90.5%
accuracy

Weight pruning strategy [32] Structured 83.5% Top-1 accuracy using a pruned Mnas-
Net with 12MB size

Low-variance features pruning [33] Unstructured Improves the performance and efficacy of mal-
ware detection models

Lightweight diffusion model [34] Unstructured Enables approximately a 50% reduction in
FLOPs

Selective structure removal [35] Structured The compressed models still exhibit satisfac-
tory capabilities

Automatic channel pruning [36] Unstructured Achieved size=16.3MB, FLOPS=2.31G, and
mAP=71.2 using SSD model

Feature welding [37] Unstructured About 49 FPS on the CPU

Parameter searching [38] Unstructured
The pruned P3DNet is 39.54% faster thanMo-
bileNet v3 and 50.65% faster than ShuffleNet
V2

Channel importance [39] Unstructured Satisfactory balance between computational
efficiency and detection accuracy

The key observation from Table 1 is that structured pruning techniques generally exhibit superior performance
compared to their unstructured counterparts, as evidenced by several works [24,25,28,31]. For instance, the structured
pruning approach using geometric mean achieves high accuracy retention on VGG-16 with a 64% compression rate
[24]. Similarly, the lightweight Bi-LSTM architecture demonstrates negligible accuracy degradation while reducing
model size significantly [27]. This suggests that structured pruning might be more effective in preserving model
accuracy while reducing model size, making it a suitable choice for edge devices.

In contrast, unstructured pruning techniques like low-variance features pruning and automatic channel pruning
tend to prioritize computational cost reduction over maintaining accuracy, as reflected by their focus on metrics like
FLOPs reduction instead of mentioning preserved accuracy [33–35].

It’s important to acknowledge that the table presents a limited selection of techniques, and their performance
can vary depending on the specific model and dataset used [24,25,27,28,31,33,35]. Additionally, it doesn’t explicitly
address the trade-offs between different approaches, such as their impact on inference speed or memory footprint.

In conclusion, the table provides evidence that structured pruning techniques might be more suitable for achieving
both accuracy preservation and size reduction when developing lightweight deep learning models for edge
devices [24,27]. However, it is crucial to carefully evaluate different techniques based on the specific application’s
requirements and consider relevant performance metrics beyond those presented in the table.

2.2. Knowledge Distillation
The intuition behindKnowledge distillation (KD) involves training a smallermodel(student) tomimic the behavior

and predictions of a larger model (teacher) [40]. The student model learns from the softened probabilities or feature
representations generated by the teacher model during training. This technique enables knowledge transfer from a
larger model to a smaller one, resulting in a more compact yet effective model [41]. Knowledge distillation (KD) is
a new approach for developing a lightweight model by transferring knowledge from a complex teacher model to a
simpler student model. It has gained popularity for its simplicity, and promising performance [42]. The concept of
knowledge distillation is visualized in Figure 3.

knowledge distillation offers a flexible framework for transferring various types of knowledge from a teacher
model to a student model, enabling the creation of compact and efficient models with comparable performance to
their larger counterparts. In knowledge distillation, the knowledge can either be Response-based [43], Feature-based
[44], or Relation [45].
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Figure 3. Concept of Knowledge Distillation.

2.2.1. Response-Based
In response-based, knowledge often describes the neuron’s reaction to the teacher model’s final output layer. The

primary concept is to precisely imitate the teacher model’s final predictions. Response-based knowledge distillation is
a common technique for model compression that is easy to use and efficient for a variety of activities and applications.
while Learning several levels of feature representation with increasing abstraction is a strong suit for deep neural
networks. According to Bengio et al., [46], this is referred to as representation learning. As a result, feature maps, the
output of intermediate layers, and the output of the final layer can be utilized as information to oversee the training
of the student model. Particularly for the training of thinner and deeper networks, feature-based knowledge from the
intermediate layers is a useful extension of response-based knowledge.

2.2.2. Relation-Based
knowledge distillation refers to the transfer of relational information or dependencies between classes from the

teacher model to the student model. This type of knowledge distillation aims to capture the complex relationships
and correlations that exist between different classes in the data, enabling the student model to better understand the
underlying structure of the task at hand [47].

2.2.3. Feature-Based
In both response and feature-based knowledge distillation, the focus is primarily on transferring soft labels or

feature embeddings from the teacher model to the student model. However, in relation-based knowledge distillation,
the emphasis shifts towards capturing the relationships between classes, which may not be explicitly encoded in the
soft labels or feature representations [44].

Knowledge distillation offers added advantages over the rest of the techniques in the sense that it does not have
restrictions over the underlying hardware, and the resulting lightweight model can be deployed with hardware ac-
celerators, to improve inference speed. Consequently, one of the major challenges of KD includes hyperparameter
selection and understanding the accuracy-compression trade-off [41].

Recent studies in KD Future include developing advanced distillation techniques and exploring transfer options
across domains [48]. Overall, knowledge distillation enables efficient model deployment and holds promise for vari-
ous application domains. Table 2 presents a summary of works found in the literature that utilized knowledge distil-
lation techniques for lightweight models.
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Table 2. Summary of Lightweight Models Using Knowledge Distillation.

Authors Response Feature Relation Performance

Musa et al. [30] [✓] Improved Accu-
racy

Cheng. D et al.
[32] [✓]

Strike a balance
between model
size and perfor-
mance

Chen et al. [48] [✓]

Achieved en-
hanced results
on Inception
and MobileNet
of 72.25%, and
64.14%

Kang et al. [49] [✓] [✓] [✓]

Outperforms
other knowledge
distillation mod-
els

Guo et al. [50] [✓]
Feasible for many
real-time deploy-
ments

Liu et al. [47] [✓]

Effective and effi-
cient for resource-
constrained envi-
ronments

Mishra et al. [51] [✓]
Improves infer-
ence time on edge
devices

Wang et al. [52] [✓] [✓]

Addresses the
trade-off between
accuracy and
efficiency

Park et al. [45] [✓]

Improves edu-
cated student
models with a sig-
nificant margin

Xu et al. [44] [✓]
Performance bet-
ter than other vari-
ants of KD

Yang et al. [43] [✓]
Suitable for IoT
and Embedded
devices

Musa et al. [41] [✓]

Achieved better
performance in
terms of accuracy
and model size

Musa et al. [1] [✓]

Reduces energy
and computa-
tional overhead
of teacher model

Zhang et al. [53] [✓]

Improve per-
formance with
reduced training
cost

Yim et al. [54] [✓]
Student DNN out-
performs the orig-
inal DNN
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From Table 2 Several studies ([30,32,43,45,46,48,49]) reported improved accuracy and performance using KD.
For instance, Musa et al. [30] achieved enhanced accuracy, while Chen et al. [45] observed significant improvements
in student models’ performance. These advancements highlight KD’s effectiveness in enhancing model performance.

Moreover, A recurring theme across the studies is the trade-off between accuracy and efficiency (model size
and inference time). While some studies prioritized accuracy ([30,43,45,46,49]), others aimed to strike a balance
between both aspects ([32,47,48]). Notably, Cheng et al. [32] achieved balanced results on Inception and MobileNet
deployments, demonstrating the potential of KD for practical applications.

The majority of the studies explored KD in the context of resource-constrained environments, like edge devices
and internet-of-things (IoT) applications ([32,47–49]). Chen et al. [45] addressed the accuracy-efficiency trade-off
and achieved efficient inference time on edge devices. Similarly, Yang et al. [39] found their method suitable for IoT
and embedded devices, while Guo et al. [47] reported reduced energy and computational overhead. These findings
suggest that KD can be effective in resource-constrained settings.

Another potential benefit of KD is reduced training costs. Musa et al. [1] observed improved performance with
reduced training cost, suggesting that KD can be a cost-effective approach to model development.

However, While the studies presented promising findings, some limitations are worth considering. Firstly, the
studies employed different benchmark datasets and evaluation metrics, making direct comparisons challenging. Sec-
ondly, the table primarily focuses on accuracy and efficiency, and other factors like memory footprint and complexities
were not mentioned in many of the works, making it difficult to extensively explore the literature from that perspective.

Therefore, the studies summarized in the table demonstrate the potential of knowledge distillation for various
improvements, including enhanced accuracy, performance, and efficiency. While acknowledging limitations, this
discussion section highlights the promising capabilities of KD and paves the way for future research directions.

2.3. Quantization
Quantization, on the other hand, reduced the precision ofweights and activation to utilize lower-bit representations,

thereby reducing memory requirements [55]. Furthermore, model quantization is a model size reduction technique
that converts model weights from high-precision floating-point representation to low-precision floating-point or inte-
ger representation, such as 16-bit or 8-bit. By converting the weights of a model from high-precision floating-point
representation to lower precision, the model size and inference speed (latency) can improve by a significant factor
without sacrificing too much accuracy [56].

Quantization is a widely used technique for compressing deep learning models, enabling efficient deployment on
resource-constrained edge devices and hardware accelerators. By reducing the precision of parameters and activa-
tions, quantization achieves significant reductions in memory storage, bandwidth requirements, and computational
complexity, while minimizing the impact on model accuracy [57].

All model parameters can be converted into low precision during quantization. In other instances selected parame-
ters such as weights, and activations as described in Figure 4 which depict neural network quantization processes [58].

Figure 4. Concept of quantization.

To obtain a lightweight model, researchers employed quantization techniques [59]. Also, it was reported that
quantization does not only reduce memory bandwidth requirement, it also improves the performance of a model and
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increases cache utilization [60]. Quantization can be achieved through quantization-aware training or post-training
quantization.

2.3.1. Quantization-aware Training(QAT)
This involves training the deep learning model while considering the effects of quantization from the outset [61].

During training, the model is trained with simulated quantization effects, allowing it to learn to adapt to the reduced
precision of parameters and activations [62]. This approach typically involves modifying the training process to
incorporate quantization-aware optimization techniques, such as quantization-aware backpropagation and activation
quantization. By training the model with quantization-aware techniques, it can achieve better accuracy and perfor-
mance when quantized for inference[63].

2.3.2. Post-Training Quantization(PTQ):
Post-training quantization, on the other hand, involves quantizing the pre-trained deep learning model after it

has been trained with full precision (typically 32-bit floating-point numbers). Once the model has been trained,
its parameters and activations are quantized to lower precision (e.g., 8-bit integers or fixed-point numbers) without
retraining [64]. This quantization process is applied after training and is often followed by fine-tuning to recover any
accuracy loss incurred by quantization. Post-training quantization is simpler to implement than quantization-aware
training and is suitable for models already trained with standard techniques [65]. Despite the promises of the two
variants of quantization, they both have some notable drawbacks. For instance, Quantization-aware training allows the
model to learn to adapt to quantization effects during training, potentially resulting in better accuracy and performance
compared to post-training quantization [66]. However, Post-training quantization is simpler to implement and does not
require modifications to the training process. It can be applied to pre-trained models without the need for retraining,
making it more practical for existing models and frameworks [67].

Overall, the choice between quantization-aware training and post-training quantization depends on factors such
as model complexity, training resources, and the desired balance between accuracy and efficiency. Both approaches
offer effective means of compressing deep learning models for deployment on resource-constrained edge devices and
hardware accelerators.

In Table 3, we present a summary of the literature on quantization-based lightweight models. The table provides
a concise summary of relevant literature on quantization techniques for model compression in deep learning. Studies
are categorized based on their approach (quantization-aware training or post-training quantization), and key findings
are outlined, including reductions in model size, improvements in inference speed, and impact on accuracy.

Table 3. Summary of Literature on Lightweight Models Using Quantization.

Authors Approach Findings
[68] QAT only 0.1% accuracy degradation.
[58] QAT Achieved 82.5% accuracy on image classi-

fication
[69] PTQ reduced model size up to 5x while main-

taining full model performance
[70] PTQ 30x fewer parameters, with higher perfor-

mance on Div2K
[71] QAT minimal training overhead using mo-

bileNet architecture.
[72] QAT Achieved a high speed, lightweight, and

relatively high accuracy
[73] PQT 2-fold decrease in memory usage from

15.51 MB down to 7.68 MB
[74] Hybrid up to 16× weight size reduction
[75] QAT Good compression ratios with negligible

accuracy degradation
[76] QAT reduces the model size while maintaining

optimal performance
[77] PQT Investigated various PQT methods. Con-

cludes that activations are better.
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We highlight recent advances in various quantization techniques employed to develop lightweight deep-learning
models for edge devices, as summarized in Table 3. Post-training quantization (PTQ) and Quantization-aware training
(QAT) emerge as popular choices, achieving good compression ratios and maintaining model accuracy ([64,65,67,71,
72]). PTQ is particularly favorable due to its minimal training overhead [66]. Combining QATwith pruning strategies
can reduce model size [70]. While PTQ shows promise, activating quantization might offer even greater benefits, as
suggested by the findings in [73]. It’s crucial to remember that this table represents just a subset of the ongoing research
in quantization. Nonetheless, quantization techniques demonstrate considerable potential for creating lightweight
deep learning models well-suited for edge devices by effectively reducing model size and memory footprint while
preserving accuracy, thus paving the way for real-time applications on resource-constrained platforms.

2.4. Reserch Trends
In this section, we comprehensively analyze emerging research trends related to lightweight models for edge

computing. Leveraging multiple databases, including but not limited to Springer, IEEE Xplore, Science Direct, ACM
Digital Library, and arXiv, we have compiled a diverse collection of papers spanning recent years. By synthesizing
findings across these databases, we aim to provide a holistic view of the evolving landscape of research in this domain.

The works from the literature were curated from various databases to ensure a broad coverage of the research
landscape. Each database offers unique insights into different aspects of lightweight models, including model archi-
tectures, optimization techniques, deployment strategies, and application domains. By combining data from multiple
sources, we gain a richer understanding of the diverse perspectives and approaches adopted by researchers worldwide.
Figure 5 presents a barplot of the frequency of the literature found in each database, while a line plot is provided in
Figure 6. to give insight into the trends of the publication per year.

Figure 5. Frequency of Research found in the databases.

Our analysis reveals the prevalence of research on lightweight models in various academic databases. Science
Direct has been the most prominent source, housing over 200 publications on lightweight models, significantly sur-
passing other databases like IEEE Xplore and Springer Link which hold a moderate quantity between 100 and 200
publications. ACM Digital Library and ArXiv Preprints appear as the least frequented sources, each containing less
than 100 publications on the topic. It is crucial to acknowledge that this graph only represents a limited set of reputable
databases, and other sources might hold valuable research not captured here. Nevertheless, this analysis suggests that
Science Direct serves as a primary source for research on lightweight models, highlighting the importance of consult-
ing diverse databases for a comprehensive understanding of this evolving field.
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Figure 6. Publication Trends.

Additionally, an analysis of publication trends across various reputable databases, as depicted in figure 6 reveals a
growing surge in research about lightweight deep learning models. From 2010 to 2024, all five databases showcased
on the chart experienced a significant rise in the number of publications. This surge signifies an interest in this field
and its potential applications. Notably, Springer Link and Science Direct emerged as the frontrunners, consistently
housing the highest volume of publications, with Science Direct exhibiting a particularly steep rise in recent years.
While IEEE Xplore and ACM Digital Library displayed a comparable pattern of growth, their overall publication
counts remained lower. Interestingly, although Arxiv Preprints held the fewest publications historically, it exhibited
the most rapid growth in recent years, suggesting its growing prominence as a platform for sharing research in this
domain. It is crucial to acknowledge that the graph solely reflects the quantity, not the specific content or quality of the
publications within each database. Nevertheless, this analysis underscores the flourishing field of lightweight deep
learning models and the increasing availability of research across diverse databases, highlighting the significance of
consulting a variety of sources for a comprehensive understanding of this evolving domain.

In conclusion, several works on model compression were found in the literature. These works were analyzed
concerning the technique used. Consequently, the studies usually evaluated their methodology on baseline databases
such as Cifar10 or Mnist. Additionally, a significant number of the techniques have a common notable drawback,
which is a performance drop after compression. proving the existence of a trade-off between compression and model
performance. To produce a lossless lightweight model, recent techniques are proposed that utilize separable convo-
lutions towards the lightweight model. This methodology was seen in the work of [78–81]. However, not all kernels
can be separated into small kernels, limiting the use of such techniques to a few architectures. Therefore, we proposed
a hybrid model combining Knowledge Distillation, pruning, and post-training quantization. We also evaluated the
model on three different real-life datasets to mimic real scenarios.

3. Proposed Hybrid Model Methodology
This section introduces the datasets used in the study and describes how the large deep-learning model is com-

pressed using various compression techniques. The section also outlined how a hybrid lightweight model is proposed
by combining pruning and quantization. Finally, the section discusses the metrics used to evaluate and compare the
different models’ performances.

3.1. Dataset
Two real-life datasets were collected for model evaluation, pothole detection, and paddy rice maturity detection.

In contrast, the soybean weed detection dataset is an open-source dataset obtained online at [82]. pothole and rice
maturity datasets were carefully collected and curated to ensure the diversity and representativeness of the target
classes. The first dataset is the pothole detection dataset [83]. Pothole images were collected and organized into two
directories, potholes, and good road surfaces, which have 1,245 and 2,943 images, respectively.

The second dataset is the rice yield detection dataset, comprising images of rice at different maturity stages. the
dataset is organized into yield and unyield directories with 1,450 and 1,285 images, respectively.

The third dataset is the soybean weed detection dataset. The dataset has three directories, namely corn, soybean,
and weed, with a total of 3,200 images.
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3.2. Data Pre-Processing
All the datasets used in this study come in different sizes and have different shapes. A pre-processing step is

necessary to transform the images into a format that is acceptable to the proposed model. The datasets are imbalanced
because the images available in one class are significantly larger than those in the other. This condition may lead to
overfitting. Therefore, data augmentation techniques, such as rotation, scaling, and flipping were applied to create
augmented images to complement the class with lower instances and to increase the size and diversity of the datasets.

3.3. Model Definition and Training
Initially, a large CNN model was built from scratch. consisting of numerous convolutional layers and millions

of parameters. The model was trained on the three selected datasets, employing appropriate parameter tuning tech-
niques and loss functions to achieve better performance. This model is regarded as a cumbersome model. While the
performance of the model is satisfactory, the size is problematic, especially if the model is to be deployed on edge
devices.

To produce a lightweight model that can be deployed on edge devices, the cumbersomemodel is compressed using
the three widely used model compression techniques discussed in Section 2. The proposed lightweight models are
evaluated using standard metrics. Lastly, a hybrid lightweight model is proposed by combining pruning, quantization
and knowledge distillation.

The proposed lightweight hybrid model received knowledge from the teacher using knowledge distillation. The
weights of the hybrid model are pruned using a 0.5 pruning ratio, whichmeans literary setting the none non-significant
weights to zero. This results in a model with 50% of the original model weight. The model was trained and fine-tuned
until adequate accuracy on the training and validation set was obtained. Finally, the pruned model was quantized from
float 32 precision to int 8 and retrained for 2 epochs using pruned weights. The description of the entire experimental
workflow and processes is presented in the system flowchart in Figure 7

Figure 7. Proposed model Flowchart.
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To further describe the proposed hybridmodel, Algorithm 1 gives a general walk-through of themodel formulation
process.

Algorithm 1 : Proposed Hybrid Model

Lightweight Deep learning Model- A survey 17

To further describe the proposed hybrid model, Algorithm 1 gives a general
walk-through of the model formulation process.

Algorithm 1: Proposed Hybrid Model

Data: Large model
Result: Lightweight model
initialized: pruning ratio ← β
obtained weights and parameters of large model γ, α ;
compute threshold ϵ ← (β * sum (γ));
compute pruned weight (β, γ, ϵ);
while training do

For all γ;
if β ≤ϵ then

γ ← 0;
else

if β > ϵ then
γ == γ;
Update parameter α ←γ;

return pruned model
while weights are pruned

.
=true do

convert model precision from fp32 to int8;
re-train pruned model with quantized parameters;

return pruned and quantized model

3.4 Performance Evaluation

The compressed models obtained from each experiment using a single compres-
sion technique were evaluated on separate test sets, for three different classifica-
tion tasks using accuracy, no. of parameters, model size, and training time. The
performance of the proposed hybrid model was recorded alongside the rest of the
models. All the models’ training and validation accuracy were also compared to
evaluate any potential performance degradation.

4 Result and Discussion

The performance of the compressed models obtained from different compression
techniques was compared with each other and with the original uncompressed
model. The trade-offs between model size reduction and classification accuracy
were analyzed for each compression technique. The hybrid lossless compressed
model was evaluated for its effectiveness in achieving a lightweight model with
state-of-the-art accuracy.

3.4. Performance Evaluation
The compressed models obtained from each experiment using a single compression technique were evaluated on

separate test sets, for three different classification tasks using accuracy, no. of parameters, model size, and training
time. The performance of the proposed hybrid model was recorded alongside the rest of the models. All the models’
training and validation accuracy were also compared to evaluate any potential performance degradation.

4. Result and Discussion
The performance of the compressed models obtained from different compression techniques was compared with

each other and with the original uncompressed model. The trade-offs between model size reduction and classification
accuracy were analyzed for each compression technique. The hybrid lossless compressed model was evaluated for its
effectiveness in achieving a lightweight model with state-of-the-art accuracy.

4.1. Experimental Setting
In this paper, we evaluated our approach on real-life datasets, not on the baseline datasets, to show the robustness

and effectiveness of our approach when used in real-life scenarios.
All the models were implemented using Python programming language and the TensorFlow framework. The

experiments were conducted on the Google Colab platform with GPU V100 backend. Therefore some metrics such
as training time might vary when trying to replicate the experiments on different hardware.

In all the experiments, data augmentation was used utilizing common augmentation strategies such as rotation,
shifting, and mirroring. the models were trained using stochastic gradient descent (SGD), with a starting learning
rate of 0.01. Both models are trained from scratch with an Adam optimizer and a batch size of 32. All models are
trained for 10 epochs each.
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4.2. Experimental Result
The experimental results, including accuracy, size reduction, and computational requirements, were recorded and

analyzed. The performances of the proposed hybrid lossless compressed model were compared with the traditional
compression methods. The results are presented in Tables 4, 5, and 6 respectively. The accuracy and loss curves
of the proposed model in all three experiments conducted are shown in Figure 8. All three traditional compression
techniques performed remarkably in reducing the model size and cutting down training time. However, some of the
techniques achieved high compression rates at the cost of accuracy, which shows that traditional compression reduced
the model performance.
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4.1 Experimental Setting

In this paper, we evaluated our approach on real-life datasets, not on the baseline
datasets, to show the robustness and effectiveness of our approach when used in
real-life scenarios.

All the models were implemented using Python programming language and
the TensorFlow framework. The experiments were conducted on the Google Co-
lab platform with GPU V100 backend. Therefore some metrics such as training
time might vary when trying to replicate the experiments on different hardware.

In all the experiments, data augmentation was used utilizing common aug-
mentation strategies such as rotation, shifting, and mirroring. the models were
trained using stochastic gradient descent (SGD), with a starting learning rate
of 0.01. Both models are trained from scratch with an Adam optimizer and a
batch size of 32. All models are trained for 10 epochs each.

4.2 Experimental Result

The experimental results, including accuracy, size reduction, and computational
requirements, were recorded and analyzed. The performances of the proposed hy-
brid lossless compressed model were compared with the traditional compression
methods. The results were presented in Tables I, II, and III respectively. The ac-
curacy and loss curves of the proposed model in all three experiments conducted
are shown in Fig. 8. All three traditional compression techniques performed re-
markably in reducing the model size and cutting down training time. However,
some of the techniques achieved high compression rates at the cost of accuracy,
which shows that traditional compression reduced the model performance.

Fig. 8. Accuracy and loss curves of the proposed model
Figure 8. Accuracy and loss curves of the proposed model.

Table 4. Performance of the models on pothole detection task.

Models Accuracy No. of Params Model Size Training Time
Large CNN 0.9743 52,768,432 603 MB 17 m
KD model 0.9828 126,569 15.3 MB 3 m

Pruned Model 0.9023 52,711,489 195 MB 7 m
Quantized 0.9241 2,936,589 35 MB 20 m

Proposed hybrid 0.9774 142,345 3.3 MB 3 m

Table 5. Performance of the models on paddy rice detection.

Models Accuracy No. of Params Model Size Training Time
Large CNN 0.8109 52,714,439 603 MB 17 m
KD model 0.7994 126,569 15.3 MB 3 m

Pruned Model 0.7612 52,711,489 195 MB 7 m
Quantized 0.7900 2,936,589 35 MB 19 m

Proposed hybrid 0.8203 142,345 3.3 MB 6 m

Table 6. Performance of the models on soybean weed detection.

Models Accuracy No. of Params Model Size Training Time
Large CNN 0.9593 52,714,439 603 MB 17 m
KD model 0.9219 126,569 15.3 MB 3 m

Pruned Model 0.9367 52,711,489 195 MB 6 m
Quantized 0.9726 2,936,589 35 MB 19 m

Proposed hybrid 0.9703 142,345 3.3 MB 6 m
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4.3. Discussion
The findings from the experiments were discussed in terms of the effectiveness of each compression technique

and its impact on model size and performance. The potential limitations and future directions for improvement
were addressed.

From the pothole detection experiment, it can be observed in Table I that the performances of the models com-
pressed using pruning and quantization techniques were reduced significantly. While knowledge distillation (KD)
compressed model performance was improved, the proposed hybrid model manages to keep performance the same.

Consequently, in the rice maturity detection task, the performance of the models changed completely. The large
CNN model was able to achieve 81%, while the KD compressed model performance reduced hugely,

Interestingly, in the third experiment on soybean weed detection, the performances of the proposed hybrid model,
KD, and quantized models improved upon the performance of the large model. while pruning performance degrades.

One notable observation from all the experiments is that the performance of the traditional model compression
techniques varies from task to task, depending on the task type and the dataset’s nature. There is a dilemma when
selecting which model compression to use, as the performance changes drastically based on the task at hand.

Another observation from the experimental results shows that among the traditional compression methods, the
KD compression technique gives the lightest model with just 11 MB on disk, 100k+ parameters, and a few minutes
of training time. However, the proposed model was able to achieve better performance with just 3.3 MB size on disk,
the same training time as the KD model, and slightly higher parameters than KD. While the rest of the model’s size
based on pruning and quantization was still relatively small compared to the large model, the training time and the
number of parameters are somewhat similar.

However, despite all the variability of the model performance when compressed, the proposed hybrid approach
was able to maintain a similar performance with the large model, or even improve it, in some scenarios. Therefore,
based on the results from the three different experiments conducted in this study, it can be concluded that the pro-
posed hybrid approach is a lossless model compression technique. The approach has proven effective in achieving
a lightweight model with a lower memory footprint, less training time, and state-of-the-art performance on image
classification. The proposed model size and performance indicate that the model can be deployed on edge devices
efficiently.

5. Conclusion and Future Direction
In this work, we propose a novel hybrid pruning-quantized model effective for deployment on edge devices. To

demonstrate the robustness of the proposed model, the model was trained and tested on various image classification
tasks using diverse datasets. The proposed approach can be used to train and compress deep neural networks effec-
tively. The results have demonstrated the usefulness of our strategy and verified that the proposed model can preserve
the redundant CNN’s performance while reducing its complexity.

It is recommended that, in the future, the proposed model be used in different domains such as NLP to measure
its cross-domain performance. It is imperative to also investigate the performance of such a hybrid model on different
domain-specific tasks without limiting the experiment to image classification only. Model safety and fairness concern
can also be investigated.
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