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Abstract: The ePUMA architecture is a novel parallel archi-

tecture being developed as a platform for low-power computing, 

typically for embedded or hand-held devices. It was originally 

designed for radio baseband processors for hand-held devices 

and for radio base stations. It has also been adapted for executing 

high definition video CODECs. In this paper, we investigate the 

possibilities and limitations of the platform for real-time 

graphics, with focus on hand-held gaming. 
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I. Introduction 

The ePUMA architecture (embedded Parallel DSP with 

Unique Memory Architecture) is a master-SIMD DSP 

platform which was primarily designed for communication 

infrastructures such as the DSP subsystem for radio base 

stations. It has been shown that ePUMA is a good architecture 

for HDTV [6]. 

The ePUMA architecture is a work in progress. It exists as a 

simulator where currently assembly language programs can be 

run and benchmarked. Higher level programming as well as 

hardware implementations are planned in the near future. 

In this paper, we report our investigations of the potential 

for the architecture as a low-power platform for video games. 

We analyze its strengths and bottlenecks for such applications, 

as well as outlining extensions to the assembly language. 

II. Related work 

Mobile gaming and mobile computing are rapidly growing 

fields with growing performance demands combined with 

demands on low energy consumption. Battery technology, as 

noted by Mochocki et. al. [8], is not evolving as fast as 

computing demands, thus much effort must be made to provide 

more performance per Watt. One approach to this is to use 

multi-core systems, reviewed by van Berkel [3]. 

For gaming, GPUs for hand-held systems are important, 

and the dominant commercial products are the PowerVR line 

from Imagination Technologies [11]. 

Woo et. al. [13] propose a low-power architecture with 

dedicated hardware subsystem for graphics as well as video 

coding. Earlier, the same group [12] proposed a 

fixed-functionality hardware for low-power graphics. 

The problem of parallel processing for rendering graphics is 

central to our work, and has been extensively studied in the 

past, for other architectures. A review of the field was done by 

Eldridge [4]. 

III. The ePUMA architecture 

The ePUMA is a master-SIMD architecture, based on a 

star-ring connectivity as shown in Figure 1. A master CPU acts 

as controller for 8 SIMD processors, each with 8 processing 

lanes, providing 8 16-bit data paths or 4 32-bit data paths per 

SIMD processor. The SIMD processors are the DSP 

subsystem of the hardware and its main processing unit. The 

main memory of the system is accessible from all SIMD cores, 

forming a star. In addition to this, a ring bus connects the eight 

cores for fast data communication. 

 

 

Figure 1: Master and SIMD architecture 

 

In the DSP subsystem shown in Figure 1, the DSP application 

code is divided into the “stream” and “kernels”. The stream is 

the top level code and it is executed in the master, a DSP 

controller or an MCU. Kernels are subroutines that can be 

executed in parallel as threads. They are executed in the eight 
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SIMD (Single Instruction Multiple Data) machines. The 

SIMD machines can be programmed using both SIMD and 

SIMT (Single Instruction Multiple Tasks) instructions. SIMT 

is for function acceleration of loops, where one layer of an 

FFT can be performed as one instruction. By using SIMT 

instructions, SIMD local control overheads are minimized. 

The Master and SIMD structure, shown in Figure 1, 

consists of 8 SIMD processors controlled by one master. The 

main memory, the DMA controller, and the master are the 

center of the star connection network. The main memory is 

connected to all nodes by DMA channels controlled by the 

master. Each node, N1-N8, connects its SIMD machine to 

both the centre of the star bus and to neighbor SIMD nodes. 

The star bus is used to perform DMA access and data 

broadcasting. The ring bus can be configured into sections to 

locally connect SIMD pairs for stream computing. 

To conclude, a complete DSP application program can be 

divided into three parts to achieve the highest efficiency 

(performance over silicon cost): The part that cannot be 

executed in parallel, such as the top level stream and tree-type 

code, will be executed in the master. The part of the code that 

can be data level parallel and require programmability (need to 

change HW in each clock cycle) will be executed on one or 

several SIMD machines. Finally, the part of the code that can 

be data level parallel and do not require programmability (do 

not change HW in a period of time, such as entropy coding) 

will be executed on an rDPA (reconfigurable Data Processing 

Array). 

A. The SIMD data path 

The SIMD machines execute all data level parallel and vector 

level parallel functions as well as function solver 

accelerations. A SIMD machine has an 8-way data path for 

parallel computing (8-in and 8-out, we call it “v” mode), 

accumulative computing (8-in and 1 out, we call it “t” mode), 

and Taylor function acceleration. Each SIMD performs an 

8-way data parallel execution in one clock cycle. 

The following local storage devices are built into each 

SIMD machine: 

• A register file, accessible as an 8x128 bit vector register 

file or 8x8x16 scalar register file. 

• An 8x40b accumulator built in the SIMD data path. 

• 3 80kB LVMs (local vector memory), where each LVM 

supports 8 memory accesses in parallel. Each memory access 

supplies a 16b data word. 

• Constant memory (CM) with 128*16b (16 vectors). 

• Program memory (PM) with 1024 instructions. 
SIMT (Single Instruction Multiple-Task) task level 

instructions are used in this solution to accelerate loop 

functions. Especially, convolution, transformation, and large 

matrix computing can be conducted in SIMT mode without 

data access and control overheads when connecting the LVMs 

directly to the SIMD data path. When connecting two input 

ports to two LVMs, the SIMD data path can support iterative 

loops; that is SIMT instructions. Most vector and triangle 

instructions can be carried by repeating micro code and 

become SIMT instructions.  

 Each SIMD machine handles: 

 

1. 8-way parallel computing (v-vector mode) per clock cycle 

2. 8-way accumulative function (t-triangle mode) per clock 

cycle 

3. One 7th order (power) Taylor series output per clock 

cycle 

4. 8 Real MAC functions per clock cycle 

5. 4 complex data MAC per clock cycle 

6. Two radix-2 FFT butterflies per clock cycle 

7. One radix-4 FFT butterflies per clock cycle 

 

Branch instructions and register value conditional branch 

instructions are supported by the SIMD processors. However, 

many conditional operations are rather controlled by a 

special-purpose bit mask register. This mask can be set by 

vector comparison operations and used for selectively 

blocking subsequent operations, e.g. copying data. 

The architecture uses wide instructions that allow full 

access to micro code level programming of the SIMD 

processors. Kernel developers are thus able to formulate their 

own assembly instructions, creating assembly instructions that 

are optimized for the application. This ability reduces the 

number of instructions and provides flexibility for kernel 

programmers. [6] 

The focus of the current research is the architecture 

exploration. For that, we use a 16b data path for simplicity, 

enabling the access of 8 16-bit words or 4 32-bit words. An 

8*32b data path including floating point support will be 

investigated later. 

B. The SIMD data access path 

To support parallel computing in SIMD, parallel load, store 

and special data manipulation (shuffling) for special parallel 

algorithms are essential for the SIMD machines [7]. Each 

SIMD machine has a vector register file as well as 3 LVMs 

(local vector memory). Each LVM supports 8 memory 

accesses in parallel. Each memory access supplies a 16b data 

word. 

 

 

Figure 2: Memory addressing  

Each LVM has its own address generator shown in Figure 2. 

For regular access, a vector data address can be generated in 

compile-time based on a conflict free address generator using 

integer linear programming. This is, however, of limited use 

for graphics. 

The following data access modes are supported: 

 

1. Normal address generation including ++/-- with address 

generator logic AGU 

2. Modulo ++/-- address generation with address generator 

logic AGU 

3. Address supplied by a permutation table where the 

permutation table is controlled by a local FSM counter.  

4. Permutation table and AGU mixed addressing 
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Up to three data vectors can be supplied per clock cycle, 

although only one from each LVM. 

The coding of addressing is based on micro code. Micro 

coded operations for data access are merged with micro code 

for arithmetic computations, together forming an assembly 

language instruction. 

A SIMD machine gets data from the main memory and uses 

the LVM as the L2 computing buffer. The vector register file is 

used as the L1 computing buffer.  

The combination of the DMA channels. LVMs and 

registers for a hierarchy of memory accesses shown in Figure 

3. This hierarchy hints how the intermediate stages act as fast 

temporary storage. 

 

 

Figure 3: Memory access and hierarchy 

IV. A graphics rendering model for ePUMA 

Our goal at this stage of the project is to prove that ePUMA, in 

its current form, is not entirely unsuited to real-time graphics 

and thereby low-power handheld gaming. This does not mean 

that neither our approach or the architecture are fixed, only 

that this first study is needed to find any critical limitations and 

as needed address them, as well as taking advantage of the 

features ePUMA provides for rendering. 

Let us consider a conventional graphics pipeline. Roughly, 

it consists of the following steps (only considering the 

traditional pipeline, not the new stages introduced recently, 

e.g. tesselation stage): 

 

• Vertex transformations 

• Primitive assembly 

• Clip, cull 

• Raster conversion 

• Fragment processing 

• Frame buffer operations 
 

The bottlenecks are usually in the last stages, fragment 

processing and frame buffer operations. However, we must 

first consider memory usage. With the LVMs being the main 

source of local memory, using them efficiently is essential. 

A. LVM usage 

Computations need to be kept local to the SIMDs as far as 

possible, effectively having the SIMDs playing the role of a 

GPU while the master takes on the tasks of a CPU. However, 

we have no dedicated frame buffer hardware, and we have no 

texturing units. (Whether they can be added to ePUMA in 

some form is a later problem to consider.) 

The usage of LVMs is critical. There are three LVMs in 

each SIMD unit. An LVM can either be available for reading 

or writing by the SIMD unit, or busy for DMA to and from the 

main memory. Let us denote these three LVMs by m0, m1 and 

m2. 

The intention by the design is that, during computing, one 

LVM (m0) should be used for persistent data, data that will be 

the same for many iterations, one (m1) should be used for 

temporary input data as well as output data, and the third (m2) 

should be busy performing DMAs, first for output of results 

from the previous iteration, then for input of new data. See 

Figure 4. Thus, for every iteration, m1 and m2 should switch 

roles while m0 will keep its role. 

 

 

Figure 4: Typical LVM usage 

This model is, however, flexible. A cyclic usage (see Figure 5) 

may prove more suitable in some cases, namely where output 

data is produced in one pass, and should be considered. This 

model is not suitable for our purposes here but has been used 

in our studies of other algorithms (to be published). 

 

 

Figure 5: Cyclic LVM usage 

Another variation of the LVM usage which we will use is to 

put all output data in m0, the ”persistent data” LVM, and 

having the other two switching between being read as source 

of input data and being busy uploading new input data, but 

with no output until all passes are finished. Thereafter, m0 is 

downloaded to the host. 

In all these cases, one LVM at a time is being occupied for 

data transfers. This model is central to the ePUMA model. 

ePUMA algorithms are described as three stage processes, 

consisting of 1) prologue, 2) computing and 3) epilogue. The 

prologue is essentially the upload of data to an LVM. 

Computing takes place within the SIMD unit. The epilogue is 

the readout of data from an LVM to main memory. Both the 

prologue and epilogue may include reorganization of data. 

For maximum performance, these operations should 

overlap as much as possible. This is illustrated by Figure 6. 
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Figure 6: Data transfer and computing overlap 

The prologue is the upload of texture data and geometry, while 

the epilogue is the readout of the resulting frame buffer. 

B. Frame buffer size 

The size of a typical frame buffer of today (iPhone 3GS) is 

480x320 pixels. We expect higher resolutions in the future. 

This means that 480x320, that is 153600 pixels (150k pixels), 

is to be considered a minimum. 

Every frame buffer pixel needs output color data (3 bytes in 

”true color” mode) plus a depth buffer value (at least 1 byte, 

preferably more). The depth buffer value must be stored 

throughout the rendering process, but does not have to be read 

back to the host. We do not consider any alpha value for the 

frame buffer, which is supported by desktop GPUs. Also, we 

do not consider any stencil buffer. 

For the output color, 16 bits per pixel can be considered. 

Lower than that is hardly acceptable today. Since we must 

have a depth buffer, the cost is still 3 bytes per pixel or more. 

So 4 bytes per pixel is very close to the minimum, and there 

may be a demand for more, like a 16-bit depth buffer. 

At 4 bytes per pixel at 480x320 pixels, we need 600 kB for 

the frame buffer. The current size of an LVM is merely 80kB 

(40k words), and can only be scaled up to a maximum of 

128kB without major design changes. This means that the 

entire frame buffer can under no circumstances fit in a single 

LVM! 

This is solved by splitting the frame buffer between the 

SIMD units. If we split the frame buffer in eight parts, we will 

need a more modest 75k per part, which fits nicely in an LVM, 

and leaves some space for other data. For higher resolutions, 

this can be scaled by splitting in 16 or even 32 parts, rendering 

in several passes. This way we can scale the system to support 

640x480 pixels, a higher depth buffer resolution, or both. 

Lower-quality alternatives like 320*240 (quarter VGA) 

can be considered, and will reduce processing time as well as 

data transfers, but we will mostly ignore this since the base 

level chosen above already fits the architecture nicely. 

This gives us three major configurations to consider: 

 

1. Low end, 320x240 in 32 bits per pixel or 480x320 in 16 

bits per pixel. Split frame buffer in eight parts. 

2. Current. 480x320 in 32 bits per pixel. Split in 8 parts. 

3. Future high resolution. 640x480 in 32 bits per pixel or 

480x320 in 40 bits per pixel (16-bit depth buffer). Split in 

16 parts (2 passes). 

 

This approach has the advantage that the amount of 

information needed to render each sub-image is significantly 

less than what is needed for the whole scene. On the other 

hand, the cost of clipping will increase. 

Granted that the frame buffer should be split in eight parts, 

we may do that in different ways, eight horizontal or vertical 

sections, or 2x4 as shown in Figure 7. The latter is likely to 

minimize the amount of added overhead for clipping. 

 

 

Figure 7: A possible frame buffer partitioning into eight parts 

C. Texture storage 

Let us now consider the problem of textures. Let us take the 

extreme case where we fill one LVM entirely with texture data. 

That will give us 80kB of texture data, 20480 pixels for 

uncompressed 32-bit textures. That means, for example, four 

64x64 textures and two 64*32 texture, or 20 32x32 textures. If 

we want to take mip-mapping into account, which we should, 

textures cost 25% more (since we only need to load two 

levels). Then we can still safely fit four 64x64 textures or 16 

32*32 ones, or a single 128x128 one. 

If we need to fit more texture data at the same time, we need 

to use texture compression. This problem has been studied 

[1][5] but needs to be studied specifically for the ePUMA 

platform. We choose to ignore it for now. 

Note that this limited texture capability only refers to a 

small part of the scene, 1/8 for what we consider the most 

typical case! That means that only textures that are needed for 

that particular part of the scene must be loaded in a particular 

LVM. What we are really doing is to use the LVMs as a 

replacement for the texture cache in a conventional GPU. 

D. Model data 

Similar reasoning apply to geometry. We will need at least 16 

bits, preferably 32 bits per coordinate in vertex data, which 

demands 48 to 96 bits for one vertex (6 or 12 bytes). Each 

vertex will also need texture coordinates, two coordinates (s, t) 

of 16 bits each. It will be addressed by an index array, roughly 

four times per vertex, which demands 8 more bytes. This gives 

us 18 bytes for very modest precision, which allows 4500 

vertices, before considering that the memory space needs to be 

shared with the texture data as well. Compression of vertex 

data is possible, to some degree. The main source of geometry 

compression is level-of-detail methods, e.g. as proposed by 

Purnomo et. al. [10]. 

We conclude that model data is no major problem. Model 

data can be uploaded as needed in small amounts, and the most 

critical LVM usage will come from textures. 

E. Texture access 

Texture access is a major issue, with several important 

considerations. First and foremost, we need to support texture 

filtering, so we must access several texels at once. These texels 

will always be neighbors, on adjacent rows. For uncompressed 

RGBA textures, we can read two neighbor texels in one 

instruction, as long as data is in different memory banks. After 

reading the pixels, they will have to be unpacked from byte 

components to word components, as illustrated in Figure 8. 
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This operation can be performed in one clock cycle using the 

half word extension instruction already defined for ePUMA. 

 

 

Figure 8: Texture access and unpacking 

Another consideration of texture access is perspective correct 

texturing. If we do not make any optimizations, perspective 

correct texturing costs one division for every pixel. That 

division is accelerated using the Taylor expansion acceleration 

mentioned above. This takes eight clock cycles to complete (or 

more, depending on precision), but is pipelined and parallel. 

Four of these cycles can be done in parallel to other work, 

which leaves four effective cycles, that is a single clock cycle 

if four values are submitted at once. For perspective correct 

texturing, that is not possible in our model so the effective cost 

is four cycles, granted that other work can cover the other four, 

which is certainly the case. 

F. Rendering model 

We now have enough detail to sketch the overall rendering 

model. We will suggest an approach based on the hardware 

dependent modeling above. 

The overall rendering model, according to the discussion 

above, works as follows: The frame buffer is split into eight 

parts, one stored in an LVM of one of the SIMDs. A scene is 

rendered by multiple passes, as follows, where the frame 

buffer is allocated at step 3. 

 

1. Geometry processing. Geometry data (vertices, 

transformation data) are split in batches that fit in 

one LVM and processed in the SIMD units. Every 

vertex is also tagged with the frame buffer region it 

falls into. The result is downloaded back to the host. 

2. Spatial sorting. Every primitive is put in lists for 

each region it falls into. Note that this processing can 

be done in parallel with step 1 if step 1 is performed 

as more than a single pass. 

3. Clipping, raster conversion and fragment 

processing. Each list constructed in step 2 is 

uploaded in batches (a single polygon at a time or 

several depending on texturing demands). Note that 

textures may be uploaded at every pass. Different 

texture data are uploaded to different SIMDs, 

depending on their respective content. 

 

According to the classification by Molnar et. al. [9], this is a 

“sort-middle” algorithm, which is the most common way to 

parallelize graphics. More specifically, it is a “sort-middle 

tiled” architecture according to the classification by Eldridge 

[4]. 

In our work, we have assumed that step 3 is the dominating 

one. This is certainly not true for every kind of scene, but a 

reasonable assumption for many real applications. 

We will now discuss more about how to handle the 

fragment processing in step 3. 

The geometry and texture data needed for rendering will be 

uploaded to LVMs in suitable batches of up to 80 kB. This will 

usually demand several passes. Although it is possible to 

render all data for 1/8 of the image in one pass by demanding 

all texture and geometry data to fit in one LVM, we do not 

consider that approach realistic. Rather, one pass may consist 

of as little as a single polygon and texture data for it. 

This will require many memory transfers, especially for 

texture data, but as we will see below, the memory access is 

not so expensive on the ePUMA. 

Thus, throughout the rendering, one LVM is used for frame 

buffer data though several passes, while the other two LVMs 

alternate as current source of texture and model data memory 

or being loaded by the data for the next pass. For the more 

detailed models, we may upload one single model with 

textures, and in other cases we may upload several models 

sharing the same textures. 

We will still be limited to less than 80kB of texture data at a 

time. This may be a serious limitation in some cases, but then 

we should consider getting around it with texture compression. 

We may also consider uploading parts of textures. This is, 

however, a limited possibility since we must work with 

consecutive blocks of memory to do so efficiently. Thus, 

textures will need to be split horizontally, or preprocessed into 

smaller sections. The latter is particularly suitable for detailed 

backgrounds, like sky boxes. 

V. Graphics performance assessment 

In this section, we will analyze the graphics performance that 

the ePUMA will have with the models given above. 

There are two bottlenecks to consider: memory transfer and 

fragment computing. Potential other possible bottlenecks to 

consider are the preprocessing of geometry on the host to 

produce data to pass to each subpart of the image, as well as 

other geometry processing in the SIMDs (e.g. clipping and 

raster conversion) which requires more processing for the 

same reason. However, we choose to ignore that at this time, 

since texture access, part of fragment computing, is considered 

the major bottleneck [1]. 

Yet another potential bottleneck in all parallel computing is 

the communication between the processors. In our case, this is 

not a problem since each SIMD can perform much work 

independently, and the only communication needed is a signal 

once one pass is completed. The number of passes should be 

fairly low, with many (thousands or more) fragments 

computed in one pass. Thus, we can safely count on zero 

overhead for communication. 

A. Memory transfer 

Memory transfers of textures, model data and frame buffer 

data will be performed by DMA. This will cost around 40 

cycles of setup time, and then it will transfer one 128-bit vector 

per clock cycle over the 128-bit wide DMA channel. For one 

full 80kB LVM, that means 655360 bits in 5120+40 cycles = 

5160 cycles, which will take 10.4µs at 500 MHz. For every 

rendering pass, we need eight uploads, resulting in a memory 

transfer time of 8*10.4 = 83.2 µs. For data uploads, there will 

be more than one block of memory, for which we must expect 

more overhead, which will, however, be variable. On the other 

hand, data uploads may just as often be smaller than a full 

LVM. 
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A number of passes will be computed, where every pass 

makes uploads, but only the last pass for a frame will 

download data. For computing a number of passes, denoted P, 

each frame will cost P*83.2 µs for uploads (plus some 

additional overhead if there are many separate memory 

blocks) plus a download cost of 83.2 µs = 83.2 (P+1). This 

gives us the following timings: 

 

 4 passes: 416 µs 

 8 passes: 749 µs 

 11 passes: 1 ms 

 200 passes: 17 ms 

 

Thus, memory bandwidth will allow over 200 passes for 50 fps 

animation, a comfortable capacity. 

B. Fragment calculation 

Fragment computing is a harder part to measure, being more 

application dependent and also subject to many 

approximations for balancing performance and quality. There 

are benchmarks available, like the GraalBench benchmark [2], 

but they are not applicable at this stage. Instead, we have to 

outline a realistic scenario. 

We assume the following situation: 

 

• Multiple coverage, so all pixels are rendered M times on the 

average. 

• All surfaces are textured. 

• Perspective correct texture mapping. 

• Two light sources. 

• Phong shading with specular reflections. 

• The geometry detail is coarse enough to make the fragment 

processing the dominant computation, not geometry 

processing. 
 

The number M, the multiple coverage number, is vital. If 

we can’t get an M of 1 or more, we can not render full-screen 

scenes fast enough with the method at hand. If M is near 1, we 

can fill the screen with polygons, but no significant overlap is 

allowed, and the time spent on other tasks, like vertex 

processing and clipping, must be totally negligible, which is 

unrealistic. If M is significantly larger than 1, the demand for 

optimization is relaxed. 

With 480*320 pixels, 50 fps animation will require 

7680000 pixels to be produced per second, which, split over 8 

SIMD units will require 960000 pixels per second per SIMD 

unit. This leaves us slightly more than 500 cycles per pixel, 

which means 500/M cycles per fragment. We must be able to 

produce fragments at a rate that allows a reasonable value of 

M. 

We will now outline a typical fragment processing 

algorithm. This is a well-known procedure (described in any 

serious computer graphics textbook) included here in order to 

make a realistic cycle count. We cannot make the cycle count 

without deciding on what approximations to make. We choose 

a reasonably ambitious but still basic model. We include 

perspective correct texture mapping, but linear interpolation 

for Phong shading, using two light sources. One texture 

look-up is done, with tri-linear texture interpolation. No 

anti-aliasing. Directional light only (so Blinn-Phong specular 

lighting can be used). 

 

1) Variables 

Most of the following variables are provided by the outer 

layer, the raster conversion process. This includes the 

fragment coordinates, Phong shading vector, texture 

coordinate over z, light vectors, normal vector, half-vector, 

viewing direction and material specularity, 

 

Fragment coordinates (x, y) 

Phong shading vector: p = (px, py, pz) 

Phong shading vector increment: dp = (dpx, dpy, dpz) 

Texture coordinates (over z): tex = (sz, tz, iz) 

Texture coordinate increments: dtex = (dsz, dtz, diz) 

Light vectors i1, i2 

Light colors c1, c2 

Blinn-Phong half-vector h1, h2 

Normal vector n 

Normal vector increment dn 

Viewing direction/surface position view 

Material specularity constant 

 

Other variables are intermediary. For simplicity, some are 

entirely implicit, while others are given defined symbols: 

 

Texture coordinates: s, t, z 

Normalized Phong shading vector: np = (npx, npy, npz) 

 

We can now outline the fragment processing in more detail: 

 

2) Algorithm inner loop outline 

Increment Phong shading vector: p = p + dp 

Increment texture coordinates: tex = tex + dtex 

Increment normal vector n = n + dn 

Inspect depth buffer: if depth(x, y) < iz then break 

 else write iz to depth buffer 

Calculate np: np = normalize(p) 

Calculate z = 1/iz 

Calculate s = sz * z 

Calculate t = tz * z 

Calculate interpolation weights and indices for texture 

memory access 

Calculate texture memory locations (for two mip-mapping 

levels) 

Get two texels from higher texture level, including unpacking 

from 8-bit to 16-bit components with half word extension 

Get two texels from higher texture level, unpack 

Interpolate texels 

Get two texels from lower texture level, unpack 

Get two texels from lower texture level, unpack 

Interpolate texels 

Interpolate between the levels 

Calculate light level 1: 

Diffuse shading: Dot product (np • i1), multiplication with 

material constant 

Specular shading: Dot product (view • h), specularity 

calculation, multiply by material constant 

Calculate light level 2: as above 

Calculate final pixel value 

Blend pixel value with old pixel value using the alpha value 

Pack pixel to 8-bit components 

Write pixel value to frame buffer 
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3) Timings 

The timings below call for some clarifications.  Optimized 

ePUMA code must be rearranged to hide pipeline latency, 

which is generally done by overlapping several passes or 

independent part of the same pass. Operations like 1/x and 

1/sqrt(x) are done using Taylor expansion, combined with a 

range check, so we can resort to other solutions outside the 

most vital interval. The specularity calculation, a power 

function, is also performed with the Taylor expansion 

acceleration. 

The calculations of lighting allows more parallelism than 

other parts. The timing for a lighting calculation is 1 cycle for 

np • i1 and np • i2, 1 cycle for view • h1 and view • h2 and 4 

cycles for two specularity power functions, all executed for 

both light sources in parallel. Finally, we need two cycles to 

sum the result and multiply with light source colors (c1, c2). 

Now we can count the total number of cycles: 

 

Increments: 2 cycles (by aligning vectors so two can be 

updated at once) 

Inspect depth buffer, write depth: 2 cycles 

np normalization: 6 cycles 

z: 4 cycles 

texture indices, interpolation weights: 1 cycle (multiply, shift 

of s and t) 

memory locations: 2 cycles 

Get two texels: 1 cycle * 4 

Interpolations: 1 * 3 

Calculate light level: 8 cycles for both 

Calculate final pixel value: 2 cycles 

Read old pixel, blend, pack and write to frame buffer: 4 cycles 

 

This sums to 38 cycles. 

 

When calculating the cycle cost, we can take advantage of 

the parallel lanes to a varying degree. Most data are vectors 

with 3 or 4 components. In some cases we can calculate two 

vectors at once, while some operations must be limited to one 

vector. The light sources are done in parallel as described 

above. Although we only perform one vector normalization, 

we can perform two for the same cost. 

The timings require the addition of some new operations to 

the ePUMA instruction set, as described in the next section. 

Thus, a single fragment will cost 38 cycles, in which time 

all the eight SIMD units will produce one fragment. In 

addition to this cost, there is an overhead per vertex, per 

polygon and per texture. Assuming (for now) that the overhead 

is negligible, we can produce as much as 13 million fragments 

per second per SIMD, for a total of 105 million fragments per 

second. This means that we may render each pixel more than 

13 times per frame (M ≤ 13) and still produce 50 frames per 

second. 

This is a modest number compared to what a dedicated 

GPU can output. However, this is using a generic architecture, 

only modified by adding new assembly instructions. 

C. Instructions added for improved graphics support 

In order to make the ePUMA more suited for a certain 

application, we may add certain additional machine-code 

instructions. This is possible on the ePUMA architecture, 

where the micro code is exposed to the kernel programmer. 

Table 1 (below) is a list of instructions that have been 

added for image and video signal processing. These instruc-

tions are also suitable for video games. 

Table 1. Accelerated operations for image and video signal 

processing 

Algorithms Kernel operations 

SAD Result =  | Ai – Bi | 

Interpolation  Result = round ((a1x1 ± a2x2 ± a3x3 ± a4x4 ± 

a5x5 ± a6x6) /32) 

De-blocking filter Result = round ((a1x1 + a2x2 + a3x3 + a4x4 + 

a5x5 + a6x6) /8) 

8×8 DCT Result = Integer butterfly computing and 

data access 

Color transform Result1 = a1x1 ± a2x2 ± a3x3; 

Result2 = a1x4 ± a2x5 ± a3x6; 

 

For graphics, the instructions in Table 2 have been identified 

as relevant. In particular, a fast division operation is vital for 

perspective correct texture lookup. Vector normalization is 

equally important. 

Table 2. Accelerated operations for graphics and video games 

Algorithms Cycle cost Kernel operations 

1/x 4 cycles Result = 1/x[31:0]; 

Short 

convolution 

1 Result1 = saturate(round(a1x1 ± 

a2x2 ± a3x3 ± a4x4)); 

Result2 = saturate(round(a1x5 ± 

a2x6 ± a3x7 ± a4x8)); 

 

More optimizations are possible through defining more 

special-purpose instructions tailored for certain situations. 

That is a task for future work. 

D. Low-power computing options 

For the case where we design for extreme low-power, we 

should consider lower frequencies. At 80 MHz with 65 nm 

technology and 0.6 V power, the power consumption will drop 

to about 0.14 W. This would produce 17 million fragments per 

second, still allowing 2 times overdraw (more on lower fps 

rates or simpler rendering cases, e.g. less texture filtering or 

Gouraud shading). 

Table 3. Graphics performance for the given model in two different 

clock frequencies (480x320 pixels) 

ePUMA clock frequency 80 MHz 500 MHz 

Fragments/second 17 million 105 million 

Overdraw at 50 fps 2 13 

Estimated power 0.14W 3.5W 

Supply voltage 0.6V 1.2V 

Vector data memory cost 80kB*3*8 80kB*3*8 

 

The two cases are compared side-by-side in table 3. Writing 

games with the limitations of the low-power system would 

certainly be a challenge, but we should remember that this is 

not at the lowest possible graphics quality, but rather fairly 

high. There is room for application-dependent optimizations, 

like using Gouraud shading in parts of the scene as well as 

reducing the interpolation to bilinear or even nearest-neighbor, 

to improve the fragment rate even more. 
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VI. Conclusions and future work 

We have reported function decomposition, mapping and 

scheduling for the graphics part of the ePUMA project, where 

the goal so far has been to show that the ePUMA is feasible for 

real-time graphics, even if not yet optimized for the purpose. 

We have found strategies for rendering with the existing 

architecture and by cycle counts demonstrated that 

performance is possible that allows graphics to be rendered in 

real time under given circumstances. 

The quantitative results show that the inner loop of polygon 

rendering with linear texture filtering and Phong shading allow 

a fill rate of 13 fragments per pixel. With stricter demands on 

the rendering, minimizing the overdraw, the system can use a 

lower clock frequency in order to produce a low-power 

gaming system processor consuming as little power as 0.14 

Watts. 

Future work include implementation of a complete graphics 

pipeline as well as investigations of algorithms and 

architecture extensions for improved graphics performance. 

These future simulations will, like the present work, motivate 

new assembly instructions as well as hardware modifications. 

Furthermore, we are investigating texture compression 

methods suitable for the ePUMA that will make it possible to 

render higher resolution textures, reducing the need for a 

texture cache. 
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