

Dynamic Publishers, Inc., USA

Adapting the ePUMA Architecture for Hand-held

Video Games

Ingemar Ragnemalm
1
 and Dake Liu

2

1 Information Coding Group, Dept of Electrical Engineering,

Linköping University, Sweden

ingis@isy.liu.se

2 Division of Computer Engineering, Dept. of Electrical Engineering,

Linköping University, Sweden
dake@isy.liu.se

Abstract: The ePUMA architecture is a novel parallel archi-

tecture being developed as a platform for low-power computing,

typically for embedded or hand-held devices. It was originally

designed for radio baseband processors for hand-held devices

and for radio base stations. It has also been adapted for executing

high definition video CODECs. In this paper, we investigate the

possibilities and limitations of the platform for real-time

graphics, with focus on hand-held gaming.

Keywords: DSP, parallel processing, SIMD, embedded,

low-power.

I. Introduction

The ePUMA architecture (embedded Parallel DSP with

Unique Memory Architecture) is a master-SIMD DSP

platform which was primarily designed for communication

infrastructures such as the DSP subsystem for radio base

stations. It has been shown that ePUMA is a good architecture

for HDTV [6].

The ePUMA architecture is a work in progress. It exists as a

simulator where currently assembly language programs can be

run and benchmarked. Higher level programming as well as

hardware implementations are planned in the near future.

In this paper, we report our investigations of the potential

for the architecture as a low-power platform for video games.

We analyze its strengths and bottlenecks for such applications,

as well as outlining extensions to the assembly language.

II. Related work

Mobile gaming and mobile computing are rapidly growing

fields with growing performance demands combined with

demands on low energy consumption. Battery technology, as

noted by Mochocki et. al. [8], is not evolving as fast as

computing demands, thus much effort must be made to provide

more performance per Watt. One approach to this is to use

multi-core systems, reviewed by van Berkel [3].

For gaming, GPUs for hand-held systems are important,

and the dominant commercial products are the PowerVR line

from Imagination Technologies [11].

Woo et. al. [13] propose a low-power architecture with

dedicated hardware subsystem for graphics as well as video

coding. Earlier, the same group [12] proposed a

fixed-functionality hardware for low-power graphics.

The problem of parallel processing for rendering graphics is

central to our work, and has been extensively studied in the

past, for other architectures. A review of the field was done by

Eldridge [4].

III. The ePUMA architecture

The ePUMA is a master-SIMD architecture, based on a

star-ring connectivity as shown in Figure 1. A master CPU acts

as controller for 8 SIMD processors, each with 8 processing

lanes, providing 8 16-bit data paths or 4 32-bit data paths per

SIMD processor. The SIMD processors are the DSP

subsystem of the hardware and its main processing unit. The

main memory of the system is accessible from all SIMD cores,

forming a star. In addition to this, a ring bus connects the eight

cores for fast data communication.

Figure 1: Master and SIMD architecture

In the DSP subsystem shown in Figure 1, the DSP application

code is divided into the “stream” and “kernels”. The stream is

the top level code and it is executed in the master, a DSP

controller or an MCU. Kernels are subroutines that can be

executed in parallel as threads. They are executed in the eight

International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 4 (2012) pp. 153-160

© MIR Labs, www.mirlabs.net/ijcisim/index.html

154 Ragnemalm and Liu

SIMD (Single Instruction Multiple Data) machines. The

SIMD machines can be programmed using both SIMD and

SIMT (Single Instruction Multiple Tasks) instructions. SIMT

is for function acceleration of loops, where one layer of an

FFT can be performed as one instruction. By using SIMT

instructions, SIMD local control overheads are minimized.

The Master and SIMD structure, shown in Figure 1,

consists of 8 SIMD processors controlled by one master. The

main memory, the DMA controller, and the master are the

center of the star connection network. The main memory is

connected to all nodes by DMA channels controlled by the

master. Each node, N1-N8, connects its SIMD machine to

both the centre of the star bus and to neighbor SIMD nodes.

The star bus is used to perform DMA access and data

broadcasting. The ring bus can be configured into sections to

locally connect SIMD pairs for stream computing.

To conclude, a complete DSP application program can be

divided into three parts to achieve the highest efficiency

(performance over silicon cost): The part that cannot be

executed in parallel, such as the top level stream and tree-type

code, will be executed in the master. The part of the code that

can be data level parallel and require programmability (need to

change HW in each clock cycle) will be executed on one or

several SIMD machines. Finally, the part of the code that can

be data level parallel and do not require programmability (do

not change HW in a period of time, such as entropy coding)

will be executed on an rDPA (reconfigurable Data Processing

Array).

A. The SIMD data path

The SIMD machines execute all data level parallel and vector

level parallel functions as well as function solver

accelerations. A SIMD machine has an 8-way data path for

parallel computing (8-in and 8-out, we call it “v” mode),

accumulative computing (8-in and 1 out, we call it “t” mode),

and Taylor function acceleration. Each SIMD performs an

8-way data parallel execution in one clock cycle.

The following local storage devices are built into each

SIMD machine:

• A register file, accessible as an 8x128 bit vector register

file or 8x8x16 scalar register file.

• An 8x40b accumulator built in the SIMD data path.

• 3 80kB LVMs (local vector memory), where each LVM

supports 8 memory accesses in parallel. Each memory access

supplies a 16b data word.

• Constant memory (CM) with 128*16b (16 vectors).

• Program memory (PM) with 1024 instructions.
SIMT (Single Instruction Multiple-Task) task level

instructions are used in this solution to accelerate loop

functions. Especially, convolution, transformation, and large

matrix computing can be conducted in SIMT mode without

data access and control overheads when connecting the LVMs

directly to the SIMD data path. When connecting two input

ports to two LVMs, the SIMD data path can support iterative

loops; that is SIMT instructions. Most vector and triangle

instructions can be carried by repeating micro code and

become SIMT instructions.

 Each SIMD machine handles:

1. 8-way parallel computing (v-vector mode) per clock cycle

2. 8-way accumulative function (t-triangle mode) per clock

cycle

3. One 7th order (power) Taylor series output per clock

cycle

4. 8 Real MAC functions per clock cycle

5. 4 complex data MAC per clock cycle

6. Two radix-2 FFT butterflies per clock cycle

7. One radix-4 FFT butterflies per clock cycle

Branch instructions and register value conditional branch

instructions are supported by the SIMD processors. However,

many conditional operations are rather controlled by a

special-purpose bit mask register. This mask can be set by

vector comparison operations and used for selectively

blocking subsequent operations, e.g. copying data.

The architecture uses wide instructions that allow full

access to micro code level programming of the SIMD

processors. Kernel developers are thus able to formulate their

own assembly instructions, creating assembly instructions that

are optimized for the application. This ability reduces the

number of instructions and provides flexibility for kernel

programmers. [6]

The focus of the current research is the architecture

exploration. For that, we use a 16b data path for simplicity,

enabling the access of 8 16-bit words or 4 32-bit words. An

8*32b data path including floating point support will be

investigated later.

B. The SIMD data access path

To support parallel computing in SIMD, parallel load, store

and special data manipulation (shuffling) for special parallel

algorithms are essential for the SIMD machines [7]. Each

SIMD machine has a vector register file as well as 3 LVMs

(local vector memory). Each LVM supports 8 memory

accesses in parallel. Each memory access supplies a 16b data

word.

Figure 2: Memory addressing

Each LVM has its own address generator shown in Figure 2.

For regular access, a vector data address can be generated in

compile-time based on a conflict free address generator using

integer linear programming. This is, however, of limited use

for graphics.

The following data access modes are supported:

1. Normal address generation including ++/-- with address

generator logic AGU

2. Modulo ++/-- address generation with address generator

logic AGU

3. Address supplied by a permutation table where the

permutation table is controlled by a local FSM counter.

4. Permutation table and AGU mixed addressing

Adapting the ePUMA Architecture for hand-held Video Games

155

Up to three data vectors can be supplied per clock cycle,

although only one from each LVM.

The coding of addressing is based on micro code. Micro

coded operations for data access are merged with micro code

for arithmetic computations, together forming an assembly

language instruction.

A SIMD machine gets data from the main memory and uses

the LVM as the L2 computing buffer. The vector register file is

used as the L1 computing buffer.

The combination of the DMA channels. LVMs and

registers for a hierarchy of memory accesses shown in Figure

3. This hierarchy hints how the intermediate stages act as fast

temporary storage.

Figure 3: Memory access and hierarchy

IV. A graphics rendering model for ePUMA

Our goal at this stage of the project is to prove that ePUMA, in

its current form, is not entirely unsuited to real-time graphics

and thereby low-power handheld gaming. This does not mean

that neither our approach or the architecture are fixed, only

that this first study is needed to find any critical limitations and

as needed address them, as well as taking advantage of the

features ePUMA provides for rendering.

Let us consider a conventional graphics pipeline. Roughly,

it consists of the following steps (only considering the

traditional pipeline, not the new stages introduced recently,

e.g. tesselation stage):

• Vertex transformations

• Primitive assembly

• Clip, cull

• Raster conversion

• Fragment processing

• Frame buffer operations

The bottlenecks are usually in the last stages, fragment

processing and frame buffer operations. However, we must

first consider memory usage. With the LVMs being the main

source of local memory, using them efficiently is essential.

A. LVM usage

Computations need to be kept local to the SIMDs as far as

possible, effectively having the SIMDs playing the role of a

GPU while the master takes on the tasks of a CPU. However,

we have no dedicated frame buffer hardware, and we have no

texturing units. (Whether they can be added to ePUMA in

some form is a later problem to consider.)

The usage of LVMs is critical. There are three LVMs in

each SIMD unit. An LVM can either be available for reading

or writing by the SIMD unit, or busy for DMA to and from the

main memory. Let us denote these three LVMs by m0, m1 and

m2.

The intention by the design is that, during computing, one

LVM (m0) should be used for persistent data, data that will be

the same for many iterations, one (m1) should be used for

temporary input data as well as output data, and the third (m2)

should be busy performing DMAs, first for output of results

from the previous iteration, then for input of new data. See

Figure 4. Thus, for every iteration, m1 and m2 should switch

roles while m0 will keep its role.

Figure 4: Typical LVM usage

This model is, however, flexible. A cyclic usage (see Figure 5)

may prove more suitable in some cases, namely where output

data is produced in one pass, and should be considered. This

model is not suitable for our purposes here but has been used

in our studies of other algorithms (to be published).

Figure 5: Cyclic LVM usage

Another variation of the LVM usage which we will use is to

put all output data in m0, the ”persistent data” LVM, and

having the other two switching between being read as source

of input data and being busy uploading new input data, but

with no output until all passes are finished. Thereafter, m0 is

downloaded to the host.

In all these cases, one LVM at a time is being occupied for

data transfers. This model is central to the ePUMA model.

ePUMA algorithms are described as three stage processes,

consisting of 1) prologue, 2) computing and 3) epilogue. The

prologue is essentially the upload of data to an LVM.

Computing takes place within the SIMD unit. The epilogue is

the readout of data from an LVM to main memory. Both the

prologue and epilogue may include reorganization of data.

For maximum performance, these operations should

overlap as much as possible. This is illustrated by Figure 6.

Ragnemalm and Liu

Figure 6: Data transfer and computing overlap

The prologue is the upload of texture data and geometry, while

the epilogue is the readout of the resulting frame buffer.

B. Frame buffer size

The size of a typical frame buffer of today (iPhone 3GS) is

480x320 pixels. We expect higher resolutions in the future.

This means that 480x320, that is 153600 pixels (150k pixels),

is to be considered a minimum.

Every frame buffer pixel needs output color data (3 bytes in

”true color” mode) plus a depth buffer value (at least 1 byte,

preferably more). The depth buffer value must be stored

throughout the rendering process, but does not have to be read

back to the host. We do not consider any alpha value for the

frame buffer, which is supported by desktop GPUs. Also, we

do not consider any stencil buffer.

For the output color, 16 bits per pixel can be considered.

Lower than that is hardly acceptable today. Since we must

have a depth buffer, the cost is still 3 bytes per pixel or more.

So 4 bytes per pixel is very close to the minimum, and there

may be a demand for more, like a 16-bit depth buffer.

At 4 bytes per pixel at 480x320 pixels, we need 600 kB for

the frame buffer. The current size of an LVM is merely 80kB

(40k words), and can only be scaled up to a maximum of

128kB without major design changes. This means that the

entire frame buffer can under no circumstances fit in a single

LVM!

This is solved by splitting the frame buffer between the

SIMD units. If we split the frame buffer in eight parts, we will

need a more modest 75k per part, which fits nicely in an LVM,

and leaves some space for other data. For higher resolutions,

this can be scaled by splitting in 16 or even 32 parts, rendering

in several passes. This way we can scale the system to support

640x480 pixels, a higher depth buffer resolution, or both.

Lower-quality alternatives like 320*240 (quarter VGA)

can be considered, and will reduce processing time as well as

data transfers, but we will mostly ignore this since the base

level chosen above already fits the architecture nicely.

This gives us three major configurations to consider:

1. Low end, 320x240 in 32 bits per pixel or 480x320 in 16

bits per pixel. Split frame buffer in eight parts.

2. Current. 480x320 in 32 bits per pixel. Split in 8 parts.

3. Future high resolution. 640x480 in 32 bits per pixel or

480x320 in 40 bits per pixel (16-bit depth buffer). Split in

16 parts (2 passes).

This approach has the advantage that the amount of

information needed to render each sub-image is significantly

less than what is needed for the whole scene. On the other

hand, the cost of clipping will increase.

Granted that the frame buffer should be split in eight parts,

we may do that in different ways, eight horizontal or vertical

sections, or 2x4 as shown in Figure 7. The latter is likely to

minimize the amount of added overhead for clipping.

Figure 7: A possible frame buffer partitioning into eight parts

C. Texture storage

Let us now consider the problem of textures. Let us take the

extreme case where we fill one LVM entirely with texture data.

That will give us 80kB of texture data, 20480 pixels for

uncompressed 32-bit textures. That means, for example, four

64x64 textures and two 64*32 texture, or 20 32x32 textures. If

we want to take mip-mapping into account, which we should,

textures cost 25% more (since we only need to load two

levels). Then we can still safely fit four 64x64 textures or 16

32*32 ones, or a single 128x128 one.

If we need to fit more texture data at the same time, we need

to use texture compression. This problem has been studied

[1][5] but needs to be studied specifically for the ePUMA

platform. We choose to ignore it for now.

Note that this limited texture capability only refers to a

small part of the scene, 1/8 for what we consider the most

typical case! That means that only textures that are needed for

that particular part of the scene must be loaded in a particular

LVM. What we are really doing is to use the LVMs as a

replacement for the texture cache in a conventional GPU.

D. Model data

Similar reasoning apply to geometry. We will need at least 16

bits, preferably 32 bits per coordinate in vertex data, which

demands 48 to 96 bits for one vertex (6 or 12 bytes). Each

vertex will also need texture coordinates, two coordinates (s, t)

of 16 bits each. It will be addressed by an index array, roughly

four times per vertex, which demands 8 more bytes. This gives

us 18 bytes for very modest precision, which allows 4500

vertices, before considering that the memory space needs to be

shared with the texture data as well. Compression of vertex

data is possible, to some degree. The main source of geometry

compression is level-of-detail methods, e.g. as proposed by

Purnomo et. al. [10].

We conclude that model data is no major problem. Model

data can be uploaded as needed in small amounts, and the most

critical LVM usage will come from textures.

E. Texture access

Texture access is a major issue, with several important

considerations. First and foremost, we need to support texture

filtering, so we must access several texels at once. These texels

will always be neighbors, on adjacent rows. For uncompressed

RGBA textures, we can read two neighbor texels in one

instruction, as long as data is in different memory banks. After

reading the pixels, they will have to be unpacked from byte

components to word components, as illustrated in Figure 8.

156

Adapting the ePUMA Architecture for hand-held Video Games

This operation can be performed in one clock cycle using the

half word extension instruction already defined for ePUMA.

Figure 8: Texture access and unpacking

Another consideration of texture access is perspective correct

texturing. If we do not make any optimizations, perspective

correct texturing costs one division for every pixel. That

division is accelerated using the Taylor expansion acceleration

mentioned above. This takes eight clock cycles to complete (or

more, depending on precision), but is pipelined and parallel.

Four of these cycles can be done in parallel to other work,

which leaves four effective cycles, that is a single clock cycle

if four values are submitted at once. For perspective correct

texturing, that is not possible in our model so the effective cost

is four cycles, granted that other work can cover the other four,

which is certainly the case.

F. Rendering model

We now have enough detail to sketch the overall rendering

model. We will suggest an approach based on the hardware

dependent modeling above.

The overall rendering model, according to the discussion

above, works as follows: The frame buffer is split into eight

parts, one stored in an LVM of one of the SIMDs. A scene is

rendered by multiple passes, as follows, where the frame

buffer is allocated at step 3.

1. Geometry processing. Geometry data (vertices,

transformation data) are split in batches that fit in

one LVM and processed in the SIMD units. Every

vertex is also tagged with the frame buffer region it

falls into. The result is downloaded back to the host.

2. Spatial sorting. Every primitive is put in lists for

each region it falls into. Note that this processing can

be done in parallel with step 1 if step 1 is performed

as more than a single pass.

3. Clipping, raster conversion and fragment

processing. Each list constructed in step 2 is

uploaded in batches (a single polygon at a time or

several depending on texturing demands). Note that

textures may be uploaded at every pass. Different

texture data are uploaded to different SIMDs,

depending on their respective content.

According to the classification by Molnar et. al. [9], this is a

“sort-middle” algorithm, which is the most common way to

parallelize graphics. More specifically, it is a “sort-middle

tiled” architecture according to the classification by Eldridge

[4].

In our work, we have assumed that step 3 is the dominating

one. This is certainly not true for every kind of scene, but a

reasonable assumption for many real applications.

We will now discuss more about how to handle the

fragment processing in step 3.

The geometry and texture data needed for rendering will be

uploaded to LVMs in suitable batches of up to 80 kB. This will

usually demand several passes. Although it is possible to

render all data for 1/8 of the image in one pass by demanding

all texture and geometry data to fit in one LVM, we do not

consider that approach realistic. Rather, one pass may consist

of as little as a single polygon and texture data for it.

This will require many memory transfers, especially for

texture data, but as we will see below, the memory access is

not so expensive on the ePUMA.

Thus, throughout the rendering, one LVM is used for frame

buffer data though several passes, while the other two LVMs

alternate as current source of texture and model data memory

or being loaded by the data for the next pass. For the more

detailed models, we may upload one single model with

textures, and in other cases we may upload several models

sharing the same textures.

We will still be limited to less than 80kB of texture data at a

time. This may be a serious limitation in some cases, but then

we should consider getting around it with texture compression.

We may also consider uploading parts of textures. This is,

however, a limited possibility since we must work with

consecutive blocks of memory to do so efficiently. Thus,

textures will need to be split horizontally, or preprocessed into

smaller sections. The latter is particularly suitable for detailed

backgrounds, like sky boxes.

V. Graphics performance assessment

In this section, we will analyze the graphics performance that

the ePUMA will have with the models given above.

There are two bottlenecks to consider: memory transfer and

fragment computing. Potential other possible bottlenecks to

consider are the preprocessing of geometry on the host to

produce data to pass to each subpart of the image, as well as

other geometry processing in the SIMDs (e.g. clipping and

raster conversion) which requires more processing for the

same reason. However, we choose to ignore that at this time,

since texture access, part of fragment computing, is considered

the major bottleneck [1].

Yet another potential bottleneck in all parallel computing is

the communication between the processors. In our case, this is

not a problem since each SIMD can perform much work

independently, and the only communication needed is a signal

once one pass is completed. The number of passes should be

fairly low, with many (thousands or more) fragments

computed in one pass. Thus, we can safely count on zero

overhead for communication.

A. Memory transfer

Memory transfers of textures, model data and frame buffer

data will be performed by DMA. This will cost around 40

cycles of setup time, and then it will transfer one 128-bit vector

per clock cycle over the 128-bit wide DMA channel. For one

full 80kB LVM, that means 655360 bits in 5120+40 cycles =

5160 cycles, which will take 10.4µs at 500 MHz. For every

rendering pass, we need eight uploads, resulting in a memory

transfer time of 8*10.4 = 83.2 µs. For data uploads, there will

be more than one block of memory, for which we must expect

more overhead, which will, however, be variable. On the other

hand, data uploads may just as often be smaller than a full

LVM.

157

 Ragnemalm and Liu

A number of passes will be computed, where every pass

makes uploads, but only the last pass for a frame will

download data. For computing a number of passes, denoted P,

each frame will cost P*83.2 µs for uploads (plus some

additional overhead if there are many separate memory

blocks) plus a download cost of 83.2 µs = 83.2 (P+1). This

gives us the following timings:

 4 passes: 416 µs

 8 passes: 749 µs

 11 passes: 1 ms

 200 passes: 17 ms

Thus, memory bandwidth will allow over 200 passes for 50 fps

animation, a comfortable capacity.

B. Fragment calculation

Fragment computing is a harder part to measure, being more

application dependent and also subject to many

approximations for balancing performance and quality. There

are benchmarks available, like the GraalBench benchmark [2],

but they are not applicable at this stage. Instead, we have to

outline a realistic scenario.

We assume the following situation:

• Multiple coverage, so all pixels are rendered M times on the

average.

• All surfaces are textured.

• Perspective correct texture mapping.

• Two light sources.

• Phong shading with specular reflections.

• The geometry detail is coarse enough to make the fragment

processing the dominant computation, not geometry

processing.

The number M, the multiple coverage number, is vital. If

we can’t get an M of 1 or more, we can not render full-screen

scenes fast enough with the method at hand. If M is near 1, we

can fill the screen with polygons, but no significant overlap is

allowed, and the time spent on other tasks, like vertex

processing and clipping, must be totally negligible, which is

unrealistic. If M is significantly larger than 1, the demand for

optimization is relaxed.

With 480*320 pixels, 50 fps animation will require

7680000 pixels to be produced per second, which, split over 8

SIMD units will require 960000 pixels per second per SIMD

unit. This leaves us slightly more than 500 cycles per pixel,

which means 500/M cycles per fragment. We must be able to

produce fragments at a rate that allows a reasonable value of

M.

We will now outline a typical fragment processing

algorithm. This is a well-known procedure (described in any

serious computer graphics textbook) included here in order to

make a realistic cycle count. We cannot make the cycle count

without deciding on what approximations to make. We choose

a reasonably ambitious but still basic model. We include

perspective correct texture mapping, but linear interpolation

for Phong shading, using two light sources. One texture

look-up is done, with tri-linear texture interpolation. No

anti-aliasing. Directional light only (so Blinn-Phong specular

lighting can be used).

1) Variables

Most of the following variables are provided by the outer

layer, the raster conversion process. This includes the

fragment coordinates, Phong shading vector, texture

coordinate over z, light vectors, normal vector, half-vector,

viewing direction and material specularity,

Fragment coordinates (x, y)

Phong shading vector: p = (px, py, pz)

Phong shading vector increment: dp = (dpx, dpy, dpz)

Texture coordinates (over z): tex = (sz, tz, iz)

Texture coordinate increments: dtex = (dsz, dtz, diz)

Light vectors i1, i2

Light colors c1, c2

Blinn-Phong half-vector h1, h2

Normal vector n

Normal vector increment dn

Viewing direction/surface position view

Material specularity constant

Other variables are intermediary. For simplicity, some are

entirely implicit, while others are given defined symbols:

Texture coordinates: s, t, z

Normalized Phong shading vector: np = (npx, npy, npz)

We can now outline the fragment processing in more detail:

2) Algorithm inner loop outline

Increment Phong shading vector: p = p + dp

Increment texture coordinates: tex = tex + dtex

Increment normal vector n = n + dn

Inspect depth buffer: if depth(x, y) < iz then break

 else write iz to depth buffer

Calculate np: np = normalize(p)

Calculate z = 1/iz

Calculate s = sz * z

Calculate t = tz * z

Calculate interpolation weights and indices for texture

memory access

Calculate texture memory locations (for two mip-mapping

levels)

Get two texels from higher texture level, including unpacking

from 8-bit to 16-bit components with half word extension

Get two texels from higher texture level, unpack

Interpolate texels

Get two texels from lower texture level, unpack

Get two texels from lower texture level, unpack

Interpolate texels

Interpolate between the levels

Calculate light level 1:

Diffuse shading: Dot product (np • i1), multiplication with

material constant

Specular shading: Dot product (view • h), specularity

calculation, multiply by material constant

Calculate light level 2: as above

Calculate final pixel value

Blend pixel value with old pixel value using the alpha value

Pack pixel to 8-bit components

Write pixel value to frame buffer

158

Adapting the ePUMA Architecture for hand-held Video Games

3) Timings

The timings below call for some clarifications. Optimized

ePUMA code must be rearranged to hide pipeline latency,

which is generally done by overlapping several passes or

independent part of the same pass. Operations like 1/x and

1/sqrt(x) are done using Taylor expansion, combined with a

range check, so we can resort to other solutions outside the

most vital interval. The specularity calculation, a power

function, is also performed with the Taylor expansion

acceleration.

The calculations of lighting allows more parallelism than

other parts. The timing for a lighting calculation is 1 cycle for

np • i1 and np • i2, 1 cycle for view • h1 and view • h2 and 4

cycles for two specularity power functions, all executed for

both light sources in parallel. Finally, we need two cycles to

sum the result and multiply with light source colors (c1, c2).

Now we can count the total number of cycles:

Increments: 2 cycles (by aligning vectors so two can be

updated at once)

Inspect depth buffer, write depth: 2 cycles

np normalization: 6 cycles

z: 4 cycles

texture indices, interpolation weights: 1 cycle (multiply, shift

of s and t)

memory locations: 2 cycles

Get two texels: 1 cycle * 4

Interpolations: 1 * 3

Calculate light level: 8 cycles for both

Calculate final pixel value: 2 cycles

Read old pixel, blend, pack and write to frame buffer: 4 cycles

This sums to 38 cycles.

When calculating the cycle cost, we can take advantage of

the parallel lanes to a varying degree. Most data are vectors

with 3 or 4 components. In some cases we can calculate two

vectors at once, while some operations must be limited to one

vector. The light sources are done in parallel as described

above. Although we only perform one vector normalization,

we can perform two for the same cost.

The timings require the addition of some new operations to

the ePUMA instruction set, as described in the next section.

Thus, a single fragment will cost 38 cycles, in which time

all the eight SIMD units will produce one fragment. In

addition to this cost, there is an overhead per vertex, per

polygon and per texture. Assuming (for now) that the overhead

is negligible, we can produce as much as 13 million fragments

per second per SIMD, for a total of 105 million fragments per

second. This means that we may render each pixel more than

13 times per frame (M ≤ 13) and still produce 50 frames per

second.

This is a modest number compared to what a dedicated

GPU can output. However, this is using a generic architecture,

only modified by adding new assembly instructions.

C. Instructions added for improved graphics support

In order to make the ePUMA more suited for a certain

application, we may add certain additional machine-code

instructions. This is possible on the ePUMA architecture,

where the micro code is exposed to the kernel programmer.

Table 1 (below) is a list of instructions that have been

added for image and video signal processing. These instruc-

tions are also suitable for video games.

Table 1. Accelerated operations for image and video signal

processing

Algorithms Kernel operations

SAD Result =  | Ai – Bi |

Interpolation Result = round ((a1x1 ± a2x2 ± a3x3 ± a4x4 ±

a5x5 ± a6x6) /32)

De-blocking filter Result = round ((a1x1 + a2x2 + a3x3 + a4x4 +

a5x5 + a6x6) /8)

8×8 DCT Result = Integer butterfly computing and

data access

Color transform Result1 = a1x1 ± a2x2 ± a3x3;

Result2 = a1x4 ± a2x5 ± a3x6;

For graphics, the instructions in Table 2 have been identified

as relevant. In particular, a fast division operation is vital for

perspective correct texture lookup. Vector normalization is

equally important.

Table 2. Accelerated operations for graphics and video games

Algorithms Cycle cost Kernel operations

1/x 4 cycles Result = 1/x[31:0];

Short

convolution

1 Result1 = saturate(round(a1x1 ±

a2x2 ± a3x3 ± a4x4));

Result2 = saturate(round(a1x5 ±

a2x6 ± a3x7 ± a4x8));

More optimizations are possible through defining more

special-purpose instructions tailored for certain situations.

That is a task for future work.

D. Low-power computing options

For the case where we design for extreme low-power, we

should consider lower frequencies. At 80 MHz with 65 nm

technology and 0.6 V power, the power consumption will drop

to about 0.14 W. This would produce 17 million fragments per

second, still allowing 2 times overdraw (more on lower fps

rates or simpler rendering cases, e.g. less texture filtering or

Gouraud shading).

Table 3. Graphics performance for the given model in two different

clock frequencies (480x320 pixels)

ePUMA clock frequency 80 MHz 500 MHz

Fragments/second 17 million 105 million

Overdraw at 50 fps 2 13

Estimated power 0.14W 3.5W

Supply voltage 0.6V 1.2V

Vector data memory cost 80kB*3*8 80kB*3*8

The two cases are compared side-by-side in table 3. Writing

games with the limitations of the low-power system would

certainly be a challenge, but we should remember that this is

not at the lowest possible graphics quality, but rather fairly

high. There is room for application-dependent optimizations,

like using Gouraud shading in parts of the scene as well as

reducing the interpolation to bilinear or even nearest-neighbor,

to improve the fragment rate even more.

159

Ragnemalm and Liu

VI. Conclusions and future work

We have reported function decomposition, mapping and

scheduling for the graphics part of the ePUMA project, where

the goal so far has been to show that the ePUMA is feasible for

real-time graphics, even if not yet optimized for the purpose.

We have found strategies for rendering with the existing

architecture and by cycle counts demonstrated that

performance is possible that allows graphics to be rendered in

real time under given circumstances.

The quantitative results show that the inner loop of polygon

rendering with linear texture filtering and Phong shading allow

a fill rate of 13 fragments per pixel. With stricter demands on

the rendering, minimizing the overdraw, the system can use a

lower clock frequency in order to produce a low-power

gaming system processor consuming as little power as 0.14

Watts.

Future work include implementation of a complete graphics

pipeline as well as investigations of algorithms and

architecture extensions for improved graphics performance.

These future simulations will, like the present work, motivate

new assembly instructions as well as hardware modifications.

Furthermore, we are investigating texture compression

methods suitable for the ePUMA that will make it possible to

render higher resolution textures, reducing the need for a

texture cache.

Acknowledgements

Special thanks to Olof Kraigher, Jian Wang and Andréas

Karlsson for fruitful discussions and technical assistance. This

work was funded by the Swedish strategic research foundation

(SSF).

References
 [1] T. Akenine-Möller, J. Ström, ”Graphics for the

Masses: A Hardware Rasterization Architecture for

Mobile Phones”, SIGGRAPH '03, 2003.

[2] I. Antochi, B. Juurlink, S. Vassiliadis, P. Liuha, ”Graal-

Bench: a 3D graphics benchmark suite for mobile

phones”, Proceedings of the 2004 ACM SIGPLAN/SIG-

BED

[3] C.H. van Berkel, ”Multi-Core for Mobile Phones”,

DATE09, 2009

[4] M. Eldridge, 2001, Designing Graphics Architectures

Around Scalability and Communication, Dissertation,

Stanford University.

[5] S. Fenney, ”Texture Compression using Low-Frequency

Signal Modulation”, Graphics Hardware, 2003

[6] D. Liu, Embedded DSP Processor Design, Application

Specific Instruction set Processors, Elsevier (Morgan

Kaufmann) 2008 ISBN 9780123741233

[7] D. Liu, J. Sohl, J. Wang, ”Parallel computing and its

architecture based on data access separated kernels”, IGI

IJERTCS March 2010.

[8] B. Mochocki, K. Lahiri, S. Cadambi, ”Power Analysis of

Mobile 3D Graphics”, DATE '06: Proceedings of the

conference on Design, automation and test in Europe,

2006

[9] S. Molnar et. al. 1994, A Sorting Classification Of Parallel

Rendering, IEEE Computer Graphics and Applications,

14(4): pp 23-32.

160

Author Biographies
Ingemar Ragnemalm was born in Linköping, Sweden, 1962. PhD 1993 in
image processing at Linköping University at the Department of Electrical
Engineering. Worked outside the university 1993-1999, with interactive
television and game programming. Teacher and researcher at Linköping
University since 1999, teaching computer graphics and game programming.
Research interests include image processing, computer graphics, parallel
processing and user interfaces.

Dake Liu is the professor of the chair and the Director of Computer
Engineering Division, Department of Electrical Engineering at Linköping
University, Sweden. He is IEEE senior member, Founder and chief scientist
of Coresonic AB Sweden, founder and CTO of FreehandDSP AB Sweden.
His research interests are application specific instruction set processors
(ASIP), on-chip multiprocessors, and multiprocessor programming for
embedded especially streaming signal processing applications. Head of the
ePUMA project.

http://portal.acm.org/author_page.cfm?id=81100531636&coll=GUIDE&dl=GUIDE&trk=0&CFID=85347021&CFTOKEN=12037880
http://portal.acm.org/author_page.cfm?id=81100408593&coll=GUIDE&dl=GUIDE&trk=0&CFID=85347021&CFTOKEN=12037880
http://portal.acm.org/author_page.cfm?id=81100048399&coll=GUIDE&dl=GUIDE&trk=0&CFID=85347021&CFTOKEN=12037880
http://portal.acm.org/author_page.cfm?id=81100642166&coll=GUIDE&dl=GUIDE&trk=0&CFID=85347021&CFTOKEN=12037880

