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Abstract— In this paper analysis of hysteresis neural network 

towards stability are proposed. In the present research 

existence, asymptotic stability and Input-output stability of 

equations as a model for hysteretic neurons are 

discussed. These neural networks can also be employed 

for image extraction in a noise interfering channels. We 

establish sufficient conditions for various stability analysis of 

this class of neural networks. The result improves the earlier 

publications due to the Input output analysis of the network 

with neutral delays. 

 
Keywords- Hysteresis Neural Networks, Asymptotic stability, 

Input output stability. 

I.  INTRODUCTION      

Hysteresis can be observed in many engineering systems 

such as control systems, electronic circuits and also observed in 

animals such as frogs [15] and crayfish [9]: In a piezoelectric 

actuator; hysteresis means that for a certain input; there is no 

unique output and the output depends on the input history [7]. 

Mathematical models describing the dynamical interactions of 

hysteresis neural network have been discussed in ([2],[4-8]). In 

this paper we consider the class of continuous – time 

hysteresis neural network as a model described by the 

following form of neutral delay differential equations  
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Then equation (1) can be written as 
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Differentiating w.r.t’t’ (2) and using system (3),  
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then system (1) can be written in the following form which 

is mathematically convenient to work with  
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      From ([ ,0], )i C R   we have ([ ,0], )i C R   .  
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Therefore, ( ) ( ),for [ ,0]i ix t s s     are the initial 

conditions associated with the network (2).   

     The system (1) may be viewed as first order 

differential equations of neutral type with varying inputs. 

From network (1) we can observe that function ,if  

depends not only on the output of a system, but also history 

of the rate of change of its output. Input-output 

representation and state variable representation are two 

different behaviors of looking at the same [20]. The two 

types of representations are used as each of them give a 

different kind of approach into how the system works 

.There exists a very close relationship between the types of 

stability results .Hence one can find adopting these two 

approaches. The latter approach is aimed at the 

determination of output bounds given the characteristics of 

the feedback system and its input. Both the input and the 

output bounds are defined in some normed spaces. Thus, 

the issue of input-output stability is referred to as an Lp 

stability analysis. Lp stability theory has been extensively 

studied in the literature ([12], [16],[17],[20],[23]). On the 

other hand, the techniques of functional analysis, pioneered 

by Sandberg [16-17] and Zames [23] have developed 

equally rapidly and generated a large number of results 

concerning the input-output properties of nonlinear 

feedback systems. The Lp stability of linear feedback 

systems with a single time-varying sector-bounded element 

is studied in [13]. The subject of feedback systems stability 

has been extensively dwelt upon in the literature [20].  

 

    In the present investigation we establish results on dealing 

with the circumstances under which conditions x  of (4) is 
pL  - stable.  

Definition 1.The solution 0x    is 
pL  - stable for (4), if it 

is stable and for 0 0( , ) Mt u D  where   
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II. EXISTENCE AND UNIQUENESS 

It is easy to see that the equilibrium of the system (4) is a 

solution of the following system of equations. For 

1,2,..., ,i n
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    Throughout this discussion, we assume that the functions 

if  satisfy the following conditions: 

For 1,2,..., ,i n there exist positive quantities iL  such 

that 

         ,i i if u t f v t L u v                        (6)                  

for  ,u v R  and  0, .t  .                                                                                                                                                        

        Now our first result is concerned with the existence of 

a unique equilibrium 
*

ix for the system (4), for 

1,2,..., ,i n
 

Theorem 1. Assume that condition (6) satisfied. In addition 

assume that the decay rates ,ia  the synaptic weights ,ijb  

and the parameters ,iL  satisfy the following inequality  
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Then under these conditions there exist a unique equilibrium 

point for the system (4). 

Proof. If  
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Define a mapping  
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In [14], a locally invertible 0C map : n nH R R is a 

homeomorphism of 
nR onto itself if it is proper that is 

1( )H K

 
is compact for any compact set K in .nR  So if 

we verify that H is proper we can have that H is a bijective 

mapping and hence H(x) = 0 has a unique solution. 

Therefore (4) has another set of unique equilibrium solution 

for each  .nx R  First we prove that if (4) have 

equilibrium then it is unique. Suppose that there are two 

equilibrium points  * *and .x x
 

 

Then we can obtain 
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If we assume  
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We have 0.i ix x    Therefore .i ix x   Hence if (4) 

have equilibrium, it has unique equilibrium. To show the 

existence of the equilibrium of (4) it is enough to show that 

H is a homeomorphism of 
nR onto itself.   From the 

uniqueness of an equilibrium proof we have that if   
* *x x  then we have 

* *( ) ( ),H x H x  hence H is 

one-to-one. Therefore H is locally invertible 0C  mapping. 

To prove proper it sufficient to prove that that H is              

     ( ) .H x for x     
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 From (10) we have 0   and hence ( )H x x  

which implies we have lim ( ) .
x

H x


  So we have 

lim ( ) .
x

H x


  Hence ( ) 0H x   has unique 

solution and (4) has a unique equilibrium point. 

 

III. STABILITY ANALYSIS 

   Global asymptotic stability of an equilibrium means that the 

recall is perfect in the sense no hints or guesses are needed. Now 

we recall that the equilibrium 
*x  associated with    input I  is   

globally asymptotically stable independent of delays, if every 

solution  x  of (4) corresponding to an arbitrary choice of initial 

functions (6), satisfies 
*lim ( ) .

n
x t x
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Then the unique equilibrium solution 
*x of (4) is globally 

asymptotically stable. 

 

Proof. From (4) and (5) we have  
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  Differentiating with respect to ’t’ and Using (14), (6) and 

using the inequality 
2 1 22ab a b   ,for any 0  for 

all real a, b we have 
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Rearranging the terms we have 
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 This intern leads to     
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Thus we have  
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i ix s x  is uniform bounded. Thus 
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      Without loss of generality, we can assume that 0iI   
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computationally tractable and to provide in depth analysis.  
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Thus we have 
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From (6) and rearranging the terms we have 
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Simplifying, we have  
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Rearranging terms we have 
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                                                                                    (25)      

Clearly  ,iF t x  is positive definite,
 

 ,0 0iF t   ,   

0t   and  is continuous on 
MD . Now we verify that 
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is locally Lipschitzian on
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Using the inequality for any 1 2,r r  , 
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1 2 1 2 1 2 .P P P Pr r p r r r r      

By applying the similar procedure for  ,iE t x  
 
is locally 

Lipschitzian on
*

MD as verified above, it can easily verify 

that  ,iF t x
 
is also locally Lipschitzian on

*

MD .   

Differentiate equation (25) w.r.t ‘ t ’ 
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  Define 
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Clearly  ,V t x  is positive definite,
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and is continuous on 
MD . Now we verify that  ,V t x
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locally Lipschitzian on
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is locally 
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MD .Differentiating (27) w.r.t ‘ t ’ and using 

(24) and (26) 
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                                                                             (28) 

From (14) 0   then we have     
 ,

0
dV t x

dt
 , 0t  .  

Hence  ,V t x  is Liapunov functional for (4).Now we 

verify that  ,
P

V t x x    on ,MD for some 0  , 

1p  .  
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From lemma 4, 0x   is 
PL - stable for (4). 

 

Example 1. Consider the network described by the system 

(4) with i=1, 2 
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Further choose if , as follows for i=1, 2 
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These parameters of the network satisfies conditions of 

Theorem 1 
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Thus conditions of theorem 2 are satisfied.  

If 2.1,p  conditions of Theorem 3 are 
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   Therefore conditions of Theorem 2 and 3 are satisfied, 

thus the equilibrium of the network is asymptotically stable 

and Lp-stable. If 5  , conditions of theorem 2 are not 

satisfied and if  1.5p   

Then conditions of theorem3 are not satisfied. So 

,p  plays important role while satisfying the conditions of 

theorems 2 and 3 respectively.  

 

       Consider the model (1) with varying inputs, then the 

model become 
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   (29)                                                                                 

      Due to the fact that the input functions are time varying 

(no longer constants), the model (29) cannot have pre 

specified equilibrium patterns.  In the applications of neural 

networks with optimization problems, state and output 

convergence of the network is basic constraint. some of the 

reasons to consider state and output convergence of the NNs 

with time-varying inputs are  discussed in( [5],[18]). Most of 

the research on these models (29) is focused on the output 

convergence analysis and it is stated that studying the state 

convergence of NNs with time varying inputs as model (29) 

in general is a difficult problem ([11],[18],[24],[,25]).  In 

our investigation we study state convergence and provide 

analysis in restricted settings (A1-A3). 

 

  We assume that 

(A1)  the functions if  , 1,2,.., ,i n  are globally Lipschitz 

continuous, monotone none decreasing activation functions 

and that is there exist 0iL   such that 

        
( ) ( )

0 ,i i
i

f f
L

 

 


 


                       (30) 

             for any , and .R      And also assume  

0, ( ) ,ifor some f x x R     , 1,2,..,i n . 

(A2) ( ),iI t are locally Lipschitz continuous that is if for 

every u   in R there exist neighborhoods 
uU such that iI  

restricted to uU  respectively are Lipschitz continuous. 

(A3) ( )iI t  satisfies the conditions   

             lim ( ) ,i i
t

I t I


                                             (31)   

    where iI  are some constants. That is lim ( ) .
t

I t I


  

Theorem 4. Assume that (A1), (A2) and (A3) are satisfied 

and there exists a constant vector 
* nx R  such that   

       
* *(1 ) ( ) 0a x l B f x I                            (32) 
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Then given any 
0

nx R  the system (29) has a unique 

solution 0( ; )x t x  defined on   [0, ) .  

Proof of Theorem 4 is discussed in [5]. 

 

        Now we obtain sufficient conditions for the equilibrium 

pattern to be globally exponentially stable. The equilibrium 

pattern 
*

ix  of (29) is said to be globally exponentially stable 

if there exist constants 0   and 1 
 
such that 

* *( ) t

i i i ix t x x e       for any 0t  We denote  

* *

0

sup ( ) ,i i i i
t

x t x


 
  

    where 
*

ix the unique 

equilibrium of the system (29).   

       

Theorem 5. Assume that the conditions (A1), (A2), and 

(A3) are satisfied and further suppose that there exist a 

positive constant  
1
min i

i n
a a

 
   such that 
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                     (33)                            

Then the equilibrium 
*w of system (29) is globally 

exponentially stable. 

 

Proof of Theorem 5 is discussed in [5]. 

 

IV. CONCLUSION AND REMARKS  

       In the present investigation, the authors have considered 

class of continuous- time hysteretic neuron model. Stability 

analysis is much desired for these systems from the point of 

view of the real world nature. We have obtained sufficient 

conditions for Input-output stability of a unique equilibrium. 

We have obtained asymptotic stability of the solutions of 

this system. The results are explicit in the sense that the 

criteria obtained are easily verifiable as they are expressed 

in terms of the parameters of the system. These models can 

be applied to a variety of real time applications such as the 

higher order hardware control systems can be replaced by 

this neural network for reducing the complexity, these 

neural networks can be desired and trained to filter out 

varying levels of noise interference in the channel and 

provide excellent data security and these neural networks 

can also be employed for image extraction in a varying 

noise interfering channels. In order to provide data security, 

a message (usually referred to as the plaintext) will be 

transformed by the sender into a random looking message 

(usually referred to as the ciphertext) by using an reversible 

mapping and transmitted to the receiver. However, during 

the transmission of the ciphertext in a noisy channel, the 

ciphertext gets altered disallowing the legitimate receiver to 

correctly get back the plaintext. To address this problem, all 

the ciphertexts(noise-free) can be stored as stable states of 

our network, so that whenever a noisy ciphertext  is input to 

the network it converges after finite number of iterations to 

one of the stable states(the one to which its Hamming 

distance is the minimum) which will result in the correct 

plaintext after decryption. 

 

     The message to be transmitted will be stored as a binary 

image [3]. This image will then be encrypted using CDMA 

spreading technique, where PN-sequences will be generated 

using an LFSR whose connection polynomial is primitive. 

Noise of certain level will be added to the encrypted image 

and transmitted to the receiver. The receiver would then 

input this noisy pattern to the network (The network would 

store all the encrypted images of the messages that will be 

eventually transmitted).  The pattern output by the network 

will then be decrypted using CDMA despreading technique. 
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