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Abstract—This paper presents a technique to optimize contour 

based template matching by using General Purpose 

computation on Graphics Processing Units (GPGPU). Contour 

based template matching requires edge detection and 

searching for presence of a template in an entire image, real 

time implementation of which is not trivial. Using the proposed 

solution, we could achieve an implementation fast enough to 

process a standard video (640 x 480) in real time with sufficient 

accuracy.  
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I.  INTRODUCTION 

Template matching refers to identifying parts of an image 

that appear similar to a given template. This entails 

comparing all pixels of the template at all possible template 

locations of the image. This turns out to be very inefficient. 

Hence heuristics are used to optimize template matching. 

These heuristics involve the use of image features like 

contours, blobs, corners, ridges, valleys et cetera to classify 

areas of the image as useful or not useful for full-fledged 

template match. Of all these heuristics, contours are most 

widely used because of the inherent nature of multiple 

objects to form edges when kept together in a scene. Other 

heuristics such as corners, blobs and ridges are 

characteristics of only a few kinds of images. 

Contour based template matching hence is a process of 

detecting the edges in a template and looking for similar 

edge patterns in input images. Standard edge detection and 

template match routines are unsuitable for real time 

applications like automated navigation systems, content 

based video search et cetera. 
This paper describes a technique to process input frames 

in real time using Graphics Processing Units (GPUs). Also, it 
suggests the use of hexagonal framework to improve the 
accuracy of edge detection and hence the template matches. 

II. PROPOSED SOLUTION 

Most optimizations in template match have been by 

reduction in size of the input image. However, reducing the 

size also has severe effects on the quality of results. Hence, 

we propose the use of hexagonal framework, which reduces 

the number of pixels but with an increase in accuracy of 

edge detection. Further, the processing of input image and 

the template are offloaded to a GPU instead of a CPU for a 

real time implementation.  

A. Hexagonal framework 

Hexagonal framework samples the image on a hexagonal 

grid. Hence each pixel is hexagonal in shape. Changing the 

shape of the pixel affects all the stages of image processing: 

acquisition, addressing and display.  
For producing such images, one needs special hardware 

with sensors, which are a grid of hexagons rather than 
squares or rectangles. Such hardware isn’t easily available. 
Hence for processing regular images using hexagonal 
framework they should be resampled on to the hexagonal 
sampling grid by mathematical operations. 

 

Fig. 1. A regular image when tiled on a hexagonal grid 

 

Fig. 1 shows how a regular image can be resampled on a 

hexagonal grid. Resampling thus involves computation of 

intensities of each of the hexagon pixels. 

Sampling to a hexagonal grid has various advantages. 

Hexagons have three characteristics that make them a better 

choice for sampling lattice than squares or rectangles. 

Hexagons are isoperimetric, which implies that the sampling 

density is highest. Unlike a square, all neighbors of a 

hexagon are equidistant and are of only one type (edge 
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connected). This ensures better detection of curves and 

hence better performance in morphological operations. 
Another fundamental concern when using a hexagonal 

grid is the data structure that should be used for storing a 
hexagonal image in the memory.  

 
 

Fig. 2(a). Three dimensional addressing 

 

 

 

Fig. 2(b). Layered addressing 

 

Fig. 2(c). Two dimensional (skewed) addressing 

 

Fig. 2(a) shows three-dimensional addressing. Such an 

addressing scheme requires more space to store data than 

required in other addressing techniques. It requires that 

coordinates along each of the three axes be stored and hence 

there is a need of three dimensional data structures. Such 

data structures are sparsely filled and waste a lot of memory. 

Fig. 2(b) shows layered addressing but calculating neighbor 

pixels or accessing any pixel is complex in this scheme. 

Hence all data retrieval operations become time consuming. 

Fig. 2(c) however shows skewed addressing scheme which 

can be implemented using a two dimensional image with a 

little wastage of space. Also, accessing neighbor pixels has a 

worst case time complexity bounded by O(1).  

Hence we chose skewed addressing as a choice of 

addressing scheme and the data structure thus required was 

a two dimensional array.  

B. Graphics Processing Units 

Let us take a look at the architecture of a GPU and what 
it offers for parallel programmers. A GPU is massively 
parallel because it is meant to perform graphics operations. 
Graphics operations involve similar processing on a lot of 
pixels, and hence inherently support single instruction 
multiple data parallelism.  

Fig. 3 depicts the flow that programmers have to follow 
to exploit its parallelism. 
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Fig. 3. Programming a Graphics Processing Unit 

 

A programmer has to first offload all its data to the 

memory of GPU. Next the GPU has to be told to start 

executing desired instructions on all the cores. Once the 

processing is finished, the results can then be copied back to 

RAM. 

There are both, vendor specific and vendor independent 

APIs available to access the GPU. However, we chose an 

open platform called Open Computing Language (OpenCL).  

The OpenCL API offers a programmer to write ‘kernels’. 

These kernels are functions which run on each of the 

graphics processors in parallel with the only difference 

being an ‘id’ which a programmer retrieves using a 

get_global_id () routine. 
The programmer has to specify the number of threads 

using the OpenCL programming model. He may use the 
logical hierarchy of work-groups and work-items to specify 
total number of threads. Fig. 4. shows the same. 

 
Fig. 4. OpenCL programming model 

 

C. Proposed Pipeline 

Thus we propose a pipeline as shown in Fig. 5 for 

template match operations. 

Fig. 5. Proposed pipeline for template matching 

 
The pipeline has various stages, each of which should be 

implemented on the GPU. An input image and a template are 
fed into this pipeline. Both the images are then resampled on 
the hexagonal grid. Next, edge maps of both, the image and 
the template, are constructed. Once the edges are obtained, 
the two edge maps are compared against each other for a 
template match. The template match operation returns the 
coordinate of the input image where best match of the 
template is located. 

III. DETAILS 

The core pipeline thus uses three kinds of operations: 

Resampling the input image on hexagonal grid, edge 

detection and template match. Let us take a look at each of 

the operations in detail. 

A. Hexagonal resampling 

To perform such a resampling, we need to compute the 
intensity of each hexagonal pixel. For that, we need the 
relationship between a hexagonal pixel and a rectangular 
pixel. If we have a relationship between the hexagonal pixel 
and a rectangular pixel, we can compute the intensity of each 
hexagonal pixel using the rectangular pixels in the image. 

If we observe carefully, the hexagonal grid has a three 
way symmetry which is analogous to the two way symmetry 
of a Euclidian plane. If x and y are the two axes of symmetry 
in a Euclidian plane, let i, j and k be the axes of symmetry of 
the hexagonal plane. A relationship between the two can be 
derived seen in Fig. 6. 
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Fig. 6. Hexagonal grid on the Euclidian plane 

The conversion of i, j and k to skewed coordinates p and q 

is straight forward (as shown in Fig. 7). 

Fig. 7. Relationship between skewed coordinates and i, j and k 

It is governed by the following equations:  

 

i = p + 2q 

j = 2p + q + 1 

k = p – q + 1 

 

Thus, the regular coordinates of Euclidian plane are 

related to i, j and k as: 

 

y = i 

x =  

 

The above relationship leads to one hexagon having color 

components from six rectangular pixels. However, only four 

major contributing pixels are considered and linearly 

interpolated. Fig. 8 depicts two cases of how one hexagon 

can be mapped to rectangular pixels.  

 

Fig. 8. Two possible mapping positions of hexagon with respect to 

rectangular grid 

 

In the image displayed on the left in Fig. 8, the four major 

contributing pixels are clearly visible. However, in the 

image displayed on the right in Fig. 8, the four pixels are not 

so clear but can be computed by position of the center of 

hexagon with respect to the rectangular pixels. 

Thus the conversion from rectangular to hexagonal 

sampling grid can be described as a step by step procedure: 

 

  1. Compute dimensions of the output hexagonal plane 

  2. For each pixel on the output plane: 

    2.1 Determine corresponding four input pixels 

    2.2 Linearly interpolate to obtain the color of the input 

pixel 

B. Edge detection 

An edge, in an image, is defined as a point where the 

intensity changes sharply. They can be computed by 

computing the magnitude of gradient at each point. This 

further is achieved by convolving the image with a suitable 

operator. One of the trivial operators used in detection of 

edges is Prewitt: 

 

Px =    Py =  

 

Convolution at a point is achieved by cross correlation. 

Hence at a point I11 in the following image matrix: 
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the result R of cross correlation with Prewitt operator would 

be determined by: 

 

Rx = (-I00) + (I02) + (-I10) + (I12) + (-I20) + (I22) 

Ry = (-I00) + (I02) + (-I10) + (I12) + (-I20) + (I22) 

R =  

 

However, in the hexagonal scenario, the Prewitt operator 

is given by: 

 

H1 =    H2 =    H3 =  

 

As it can be observed, that H1 = H2 – H3, the computation 

is reduced and only two convolutions need to be performed. 

H2 and H3 can be used to compute the horizontal gradient. 

We then need to find the neighbors of each point (p, q) so 

that convolution can be performed. If we observe, the choice 

of our data structure facilitates this and the coordinates of 

neighbors will be given by: 

 

I0 = (p + 1, q) 

I1 = (p - 1, q) 

I2 = (p - 1, q + 1) 

I3 = (p, q + 1) 

I4 = (p, q - 1) 

I5 = (p + 1, q - 1) 

 

The value of convolution at (p, q) with H2 and H3 is thus 

given by: 

 

R2 = (+1 * I1) + (-1 * I2) + (+1 * I4) + (-1 * I5) 

R3 = (-1 * I0) + (-1 * I2) + (+1 * I4) + (+1 * I6) 

R1 = R2 – R3 

 

The resultant R is the vector sum of R1, R2 and R3. The 

value R is then subjected to a threshold to obtain desired 

result.  

 

To summarize, here is the pseudo code for edge detection: 

 

1. For an image of (m+2) x (n+2), allocate an output 

image of m x n 

2. For each point on the output image: 

  2.1 Calculate convolutions R2 and R3 

  2.2 Compute R1 using R2 and R3 

  2.3 Find resultant vector sum of R1, R2 and R3 

  2.4 Threshold to a binary value 

C. Template matching 

Template matching is performed on the outputs of the 
second stage in the pipeline.  

Once the contours of the template and the image are ready, 

the template is cross-correlated at all possible locations of 

the image. The position of best match correlates to the 

maximum extent. Thus, when normalized over a range of [0, 

255], we get a grayscale map with the brightest point 

indicating the point of best match. Fig. 9 shows an 

illustration of template match. 

 

  

Fig. 9. An image, a template and the grayscale output of template match 

 

The cross correlation between the image and the template 

is measured as a score at each point obtained by taking ratio 

of matched pixels at that point to total template pixels. 
So, the algorithm for template match can be described as: 
 

  1. For an image of size (m x n) and template of size (p x q): 
  2. Allocate an output image of (m – p + 1) x (n – q + 1) 

  3. For each point on the output image: 

    3.1 Compute template correlation with image at that point 

    3.2 Normalize the correlation value to [0, 255] 
  4. Return brightest point’s location and value 

IV. PARALLELING THE PIPELINE ON GPU 

Now that we’ve seen the serial implementation of the 

pipeline, we’ll see how to implement this on a GPU. While 

implementing functions on GPU we need to keep in mind 

that data has to be transferred to the GPU memory before 

any kind of processing can be done. Hence, while 

developing modules, we must not copy data back to RAM at 

the end of each pipeline stage (unless we’re debugging and 

want to see the sample results).  

Since all the operations of our pipeline are image 

transformations, these are embarrassingly parallel and can 

be paralleled on the GPU according to one thread per output 

pixel basis. 

A. Hexagonal resampling 

In resampling of image on the hexagonal grid, the CPU 

calculates the dimensions of the output image and invokes 

one thread per output pixel on the GPU. The thread in turn 

computes location of four corresponding hexagonal pixels 

and linearly interpolates their intensities. Once done, the 

output is stored in the GPU memory. The output of this 

stage of the pipeline is a hexagonal image. 

B. Edge detection 

Since edge detection is performed by convolution of 

Hexagonal Prewitt operator at each of the pixel locations of 

the image, one output thread is made to perform one 

convolution and threshold it to produce a binary image. 
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Thus the output of this stage is a binary image containing 

the edge map of the hexagonal image. 

C. Template matching 

The final stage of the pipeline also has a fixed size output. 
The output represents the output of cross-correlation of the 
template with each of the input image pixels. Hence each 
thread of the GPU is responsible for cross-correlated with the 
template and thus generating one pixel of the output image. 

V. RESULTS 

A. Example 

Fig. 10 displays the sample image and a template fed into 

the pipeline. Note that the template is a general image of a 

car and does not belong to the input image. 

 

 

Fig. 10. Sample image and sample template 

 

Fig. 11 displays hexagonally sampled image and template 

projected on a rectangular grid. These images appear 

skewed because of the mismatch in coordinate systems. 

These images are meant to be hexagonal images and 

requires displays / paper with hexagonal pixels. However, 

since we are trying to view this on a screen / paper with 

square pixels, the image appears skewed.  

 

 

Fig. 11. Hexagonally sampled images 

 

Fig. 12 shows convolution of images shown in Fig. 8 and 

corresponding edge maps. Notice how each of the edges in 

the original image turn white in this image. 

  

Fig. 12. Edge detection of the image and template shown in Fig. 9. 

 

Fig. 13 shows the final result of the normalized template 

match. The areas where correlation scores are good turn 

white and the areas where the score is bad, remain black. 

The higher the cross-correlation score, the brighter (close to 

white) the pixel in the output image. As it can be seen, there 

has been a good correlation of the template in the areas 

where there were cars in the original image. 

Fig. 13. Template match result. Brightness indicates good correlation. 

 

B. Implementation details 

Table I gives the details of the system that was used for 

benchmarking. We used a system with Intel Pentium 4 

processor clocked at 3.0 GHz and having 2 GB DDR2 

memory. The system had a GPU by NVIDIA GeForce 

GTX465 running at 1.2GHz with 1GB DDR5 memory. 

 

 

TABLE I 
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SPECIFICATIONS OF SYSTEM USED FOR BENCHMARKING 

CPU 

Vendor Intel 

Model Pentium 4 

Memory 2 GB DDR2 

GPU 

Vendor NVIDIA 

Model GeForce GTX 465 

Memory 1 GB GDDR5 

 

We used the C programming language to implement the 

pipeline. The video input / output was taken care by 

OpenCV 2.2 library. We used NVIDIA’s implementation of 

the OpenCL library to write kernels that ran on the GPU. 

C. Performance analysis 

We used the pipeline to build a content based video 

search application. The application, as the name suggests, 

searches for a template in a given video and displays the 

results in real time. It highlights the areas inside the video 

wherever a match is found. 

Performance was analyzed in terms of two parameters: 

speed and quality.  

Fig. 14 shows a comparison between GPU time and CPU 

time, taken to process a frame by the pipeline of varying 

size. The template size is kept constant at 100 x 100 pixels 

and the image dimensions are varied.  

 

Fig. 14. Time taken by CPU and GPU vs Image dimensions 

 

As it can be seen, the time taken by the CPU rises 

exponentially whereas the time taken by the GPU remains 

almost constant as the image size scales. 

Fig. 12 shows a comparison between GPU and CPU time, 

taken to process a frame of 480x640 pixels with varying 

template sizes. 

 

Fig. 15. Time taken by CPU and GPU vs Template dimensions 

 

The results are similar to the ones shown in Fig. 14. When 

the template size is increased, the time taken by the CPU 

increases exponentially whereas the time taken by the GPU 

remain almost constant. It is independent of the template 

size. 

Fig. 13 shows a ratio of time taken by the CPU and by the 

GPU for a fixed template of size 100 x 100 pixels and 

frames of varying size. 

 

Fig. 16. Ratio of time taken by CPU and GPU vs Image dimensions 

 

For smaller images, the gain by using a GPU based 

pipeline is not as significant as with larger images. After 

crossing a certain image size, the speedup remains almost 

constant. As it can be seen, full HD videos can also gain up 

to 90 times with a GPU based pipeline. 

 

Fig. 14 shows a quality metric. It shows how well the 

algorithm works for different video qualities. It is done by 

blurring the input video at multiple levels and then 

performing template match. 
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Fig. 17. Image blurring percentage vs matching percentage 

 

The blur applied to each image is a Gaussian blur. As 

long as the images do not have a high blur (say > 25%), the 

template match pipeline was able to find the template 

correctly. 

Table II shows how the template match algorithm 

behaves when subjected to images of different edge density. 

Different edge intensities have been simulated by varying 

the edge detection threshold of the images. Thus, images 

with a low threshold behave similar to images with very 

high edge density. And images with a high threshold have a 

very few edges. 

TABLE II 

TEMPLATE MATCH RESULTS FOR IMAGES WITH DIFFERENT 

EDGE CHARACTERISTICS 

Image Threshold Result 

500 Not Matched 

1000 Not Matched 

1500 Matched 

2000 Matched 

2500 Matched 

3000 Matched 

3500 Matched 

4000 Matched 

4500 Matched 

5000 Matched 

5500 Matched 

6000 Matched 

6500 Not Matched 

7000 Not Matched 

7500 Not Matched 

 

Thus images with very high edges and very few edges are 
not matched accurately. A similar behavior is observed with 
a constant image and varying template qualities. 

TABLE III 

TEMPLATE MATCH RESULTS FOR TEMPLATES WITH 

DIFFERENT EDGE CHARACTERISTICS 

Template Threshold Result 

500 Not Matched 

1000 Not Matched 

1500 Not Matched 

2000 Matched 

2500 Matched 

3000 Matched 

3500 Matched 

4000 Matched 

4500 Matched 

5000 Matched 

5500 Matched 

6000 Matched 

6500 Matched 

7000 Not matched 

7500 Not matched 

The template behavior is similar to the image behavior. 
Thus if the templates have too many edges or too few edges, 
the pipeline will fail to identify the template in a given set of 
images or video frames. 

VI. CONCLUSION AND FUTURE SCOPE 

The project is aimed towards optimizing contour based 

template matching. By the proposed pipeline, we have been 

able to implement a hexagonal framework on a GPU. 

Hexagonal framework reduces amount of data to be 

processed and thus offers performance gain without loss of 

accuracy. Using the GPU’s parallelism, we have been able 

to search for template in frames in less than 10 ms (100 

frames per second). The quality of template match suffices 

if both the template and the image have moderate edge 

characteristics. 

Since processing time for a frame can go up to 33 ms for 

a frame (keeping in mind the real time limit of 30 frames 

per second), there is a scope for utilization of the remaining 

time and GPU computing power. It can be used for 

considering other attributes such as scaling and rotation of 

templates on the runtime. For instance, given a template, the 

GPU should be able to compute the edge map of the 

template, rotated at various angles. And templates at all the 

rotations can then be searched for in the input images or 

video frames. 
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