
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 7 (2015) pp. 032-040

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Optimization of countour based template matching using GPGPU based hexagonal

framework

Mayank Bhagya, Sanjay Tripathi

Bachelor of Technology, Department of CSE

NITK Surathkal

Karnataka, India

mayankbhagya@gmail.com, sanjay.1506@gmail.com

P. Santhi Thilagam

Associate Professor, Department of COE

NITK Surathkal

Karnataka, India

santhisocrates@gmail.com

Abstract—This paper presents a technique to optimize contour

based template matching by using General Purpose

computation on Graphics Processing Units (GPGPU). Contour

based template matching requires edge detection and

searching for presence of a template in an entire image, real

time implementation of which is not trivial. Using the proposed

solution, we could achieve an implementation fast enough to

process a standard video (640 x 480) in real time with sufficient

accuracy.

Keywords-computer vision; image edge detection; image

recognition; image sampling

I. INTRODUCTION

Template matching refers to identifying parts of an image

that appear similar to a given template. This entails

comparing all pixels of the template at all possible template

locations of the image. This turns out to be very inefficient.

Hence heuristics are used to optimize template matching.

These heuristics involve the use of image features like

contours, blobs, corners, ridges, valleys et cetera to classify

areas of the image as useful or not useful for full-fledged

template match. Of all these heuristics, contours are most

widely used because of the inherent nature of multiple

objects to form edges when kept together in a scene. Other

heuristics such as corners, blobs and ridges are

characteristics of only a few kinds of images.

Contour based template matching hence is a process of

detecting the edges in a template and looking for similar

edge patterns in input images. Standard edge detection and

template match routines are unsuitable for real time

applications like automated navigation systems, content

based video search et cetera.
This paper describes a technique to process input frames

in real time using Graphics Processing Units (GPUs). Also, it
suggests the use of hexagonal framework to improve the
accuracy of edge detection and hence the template matches.

II. PROPOSED SOLUTION

Most optimizations in template match have been by

reduction in size of the input image. However, reducing the

size also has severe effects on the quality of results. Hence,

we propose the use of hexagonal framework, which reduces

the number of pixels but with an increase in accuracy of

edge detection. Further, the processing of input image and

the template are offloaded to a GPU instead of a CPU for a

real time implementation.

A. Hexagonal framework

Hexagonal framework samples the image on a hexagonal

grid. Hence each pixel is hexagonal in shape. Changing the

shape of the pixel affects all the stages of image processing:

acquisition, addressing and display.
For producing such images, one needs special hardware

with sensors, which are a grid of hexagons rather than
squares or rectangles. Such hardware isn’t easily available.
Hence for processing regular images using hexagonal
framework they should be resampled on to the hexagonal
sampling grid by mathematical operations.

Fig. 1. A regular image when tiled on a hexagonal grid

Fig. 1 shows how a regular image can be resampled on a

hexagonal grid. Resampling thus involves computation of

intensities of each of the hexagon pixels.

Sampling to a hexagonal grid has various advantages.

Hexagons have three characteristics that make them a better

choice for sampling lattice than squares or rectangles.

Hexagons are isoperimetric, which implies that the sampling

density is highest. Unlike a square, all neighbors of a

hexagon are equidistant and are of only one type (edge

Optimization of countour based template matching using GPGPU based hexagonal framework 33

connected). This ensures better detection of curves and

hence better performance in morphological operations.
Another fundamental concern when using a hexagonal

grid is the data structure that should be used for storing a
hexagonal image in the memory.

Fig. 2(a). Three dimensional addressing

Fig. 2(b). Layered addressing

Fig. 2(c). Two dimensional (skewed) addressing

Fig. 2(a) shows three-dimensional addressing. Such an

addressing scheme requires more space to store data than

required in other addressing techniques. It requires that

coordinates along each of the three axes be stored and hence

there is a need of three dimensional data structures. Such

data structures are sparsely filled and waste a lot of memory.

Fig. 2(b) shows layered addressing but calculating neighbor

pixels or accessing any pixel is complex in this scheme.

Hence all data retrieval operations become time consuming.

Fig. 2(c) however shows skewed addressing scheme which

can be implemented using a two dimensional image with a

little wastage of space. Also, accessing neighbor pixels has a

worst case time complexity bounded by O(1).

Hence we chose skewed addressing as a choice of

addressing scheme and the data structure thus required was

a two dimensional array.

B. Graphics Processing Units

Let us take a look at the architecture of a GPU and what
it offers for parallel programmers. A GPU is massively
parallel because it is meant to perform graphics operations.
Graphics operations involve similar processing on a lot of
pixels, and hence inherently support single instruction
multiple data parallelism.

Fig. 3 depicts the flow that programmers have to follow
to exploit its parallelism.

Bhagya et al.

34

Fig. 3. Programming a Graphics Processing Unit

A programmer has to first offload all its data to the

memory of GPU. Next the GPU has to be told to start

executing desired instructions on all the cores. Once the

processing is finished, the results can then be copied back to

RAM.

There are both, vendor specific and vendor independent

APIs available to access the GPU. However, we chose an

open platform called Open Computing Language (OpenCL).

The OpenCL API offers a programmer to write ‘kernels’.

These kernels are functions which run on each of the

graphics processors in parallel with the only difference

being an ‘id’ which a programmer retrieves using a

get_global_id () routine.
The programmer has to specify the number of threads

using the OpenCL programming model. He may use the
logical hierarchy of work-groups and work-items to specify
total number of threads. Fig. 4. shows the same.

Fig. 4. OpenCL programming model

C. Proposed Pipeline

Thus we propose a pipeline as shown in Fig. 5 for

template match operations.

Fig. 5. Proposed pipeline for template matching

The pipeline has various stages, each of which should be

implemented on the GPU. An input image and a template are
fed into this pipeline. Both the images are then resampled on
the hexagonal grid. Next, edge maps of both, the image and
the template, are constructed. Once the edges are obtained,
the two edge maps are compared against each other for a
template match. The template match operation returns the
coordinate of the input image where best match of the
template is located.

III. DETAILS

The core pipeline thus uses three kinds of operations:

Resampling the input image on hexagonal grid, edge

detection and template match. Let us take a look at each of

the operations in detail.

A. Hexagonal resampling

To perform such a resampling, we need to compute the
intensity of each hexagonal pixel. For that, we need the
relationship between a hexagonal pixel and a rectangular
pixel. If we have a relationship between the hexagonal pixel
and a rectangular pixel, we can compute the intensity of each
hexagonal pixel using the rectangular pixels in the image.

If we observe carefully, the hexagonal grid has a three
way symmetry which is analogous to the two way symmetry
of a Euclidian plane. If x and y are the two axes of symmetry
in a Euclidian plane, let i, j and k be the axes of symmetry of
the hexagonal plane. A relationship between the two can be
derived seen in Fig. 6.

Optimization of countour based template matching using GPGPU based hexagonal framework 35

Fig. 6. Hexagonal grid on the Euclidian plane

The conversion of i, j and k to skewed coordinates p and q

is straight forward (as shown in Fig. 7).

Fig. 7. Relationship between skewed coordinates and i, j and k

It is governed by the following equations:

i = p + 2q

j = 2p + q + 1

k = p – q + 1

Thus, the regular coordinates of Euclidian plane are

related to i, j and k as:

y = i

x =

The above relationship leads to one hexagon having color

components from six rectangular pixels. However, only four

major contributing pixels are considered and linearly

interpolated. Fig. 8 depicts two cases of how one hexagon

can be mapped to rectangular pixels.

Fig. 8. Two possible mapping positions of hexagon with respect to

rectangular grid

In the image displayed on the left in Fig. 8, the four major

contributing pixels are clearly visible. However, in the

image displayed on the right in Fig. 8, the four pixels are not

so clear but can be computed by position of the center of

hexagon with respect to the rectangular pixels.

Thus the conversion from rectangular to hexagonal

sampling grid can be described as a step by step procedure:

 1. Compute dimensions of the output hexagonal plane

 2. For each pixel on the output plane:

 2.1 Determine corresponding four input pixels

 2.2 Linearly interpolate to obtain the color of the input

pixel

B. Edge detection

An edge, in an image, is defined as a point where the

intensity changes sharply. They can be computed by

computing the magnitude of gradient at each point. This

further is achieved by convolving the image with a suitable

operator. One of the trivial operators used in detection of

edges is Prewitt:

Px = Py =

Convolution at a point is achieved by cross correlation.

Hence at a point I11 in the following image matrix:

Bhagya et al.

36

the result R of cross correlation with Prewitt operator would

be determined by:

Rx = (-I00) + (I02) + (-I10) + (I12) + (-I20) + (I22)

Ry = (-I00) + (I02) + (-I10) + (I12) + (-I20) + (I22)

R =

However, in the hexagonal scenario, the Prewitt operator

is given by:

H1 = H2 = H3 =

As it can be observed, that H1 = H2 – H3, the computation

is reduced and only two convolutions need to be performed.

H2 and H3 can be used to compute the horizontal gradient.

We then need to find the neighbors of each point (p, q) so

that convolution can be performed. If we observe, the choice

of our data structure facilitates this and the coordinates of

neighbors will be given by:

I0 = (p + 1, q)

I1 = (p - 1, q)

I2 = (p - 1, q + 1)

I3 = (p, q + 1)

I4 = (p, q - 1)

I5 = (p + 1, q - 1)

The value of convolution at (p, q) with H2 and H3 is thus

given by:

R2 = (+1 * I1) + (-1 * I2) + (+1 * I4) + (-1 * I5)

R3 = (-1 * I0) + (-1 * I2) + (+1 * I4) + (+1 * I6)

R1 = R2 – R3

The resultant R is the vector sum of R1, R2 and R3. The

value R is then subjected to a threshold to obtain desired

result.

To summarize, here is the pseudo code for edge detection:

1. For an image of (m+2) x (n+2), allocate an output

image of m x n

2. For each point on the output image:

 2.1 Calculate convolutions R2 and R3

 2.2 Compute R1 using R2 and R3

 2.3 Find resultant vector sum of R1, R2 and R3

 2.4 Threshold to a binary value

C. Template matching

Template matching is performed on the outputs of the
second stage in the pipeline.

Once the contours of the template and the image are ready,

the template is cross-correlated at all possible locations of

the image. The position of best match correlates to the

maximum extent. Thus, when normalized over a range of [0,

255], we get a grayscale map with the brightest point

indicating the point of best match. Fig. 9 shows an

illustration of template match.

Fig. 9. An image, a template and the grayscale output of template match

The cross correlation between the image and the template

is measured as a score at each point obtained by taking ratio

of matched pixels at that point to total template pixels.
So, the algorithm for template match can be described as:

 1. For an image of size (m x n) and template of size (p x q):
 2. Allocate an output image of (m – p + 1) x (n – q + 1)

 3. For each point on the output image:

 3.1 Compute template correlation with image at that point

 3.2 Normalize the correlation value to [0, 255]
 4. Return brightest point’s location and value

IV. PARALLELING THE PIPELINE ON GPU

Now that we’ve seen the serial implementation of the

pipeline, we’ll see how to implement this on a GPU. While

implementing functions on GPU we need to keep in mind

that data has to be transferred to the GPU memory before

any kind of processing can be done. Hence, while

developing modules, we must not copy data back to RAM at

the end of each pipeline stage (unless we’re debugging and

want to see the sample results).

Since all the operations of our pipeline are image

transformations, these are embarrassingly parallel and can

be paralleled on the GPU according to one thread per output

pixel basis.

A. Hexagonal resampling

In resampling of image on the hexagonal grid, the CPU

calculates the dimensions of the output image and invokes

one thread per output pixel on the GPU. The thread in turn

computes location of four corresponding hexagonal pixels

and linearly interpolates their intensities. Once done, the

output is stored in the GPU memory. The output of this

stage of the pipeline is a hexagonal image.

B. Edge detection

Since edge detection is performed by convolution of

Hexagonal Prewitt operator at each of the pixel locations of

the image, one output thread is made to perform one

convolution and threshold it to produce a binary image.

Optimization of countour based template matching using GPGPU based hexagonal framework 37

Thus the output of this stage is a binary image containing

the edge map of the hexagonal image.

C. Template matching

The final stage of the pipeline also has a fixed size output.
The output represents the output of cross-correlation of the
template with each of the input image pixels. Hence each
thread of the GPU is responsible for cross-correlated with the
template and thus generating one pixel of the output image.

V. RESULTS

A. Example

Fig. 10 displays the sample image and a template fed into

the pipeline. Note that the template is a general image of a

car and does not belong to the input image.

Fig. 10. Sample image and sample template

Fig. 11 displays hexagonally sampled image and template

projected on a rectangular grid. These images appear

skewed because of the mismatch in coordinate systems.

These images are meant to be hexagonal images and

requires displays / paper with hexagonal pixels. However,

since we are trying to view this on a screen / paper with

square pixels, the image appears skewed.

Fig. 11. Hexagonally sampled images

Fig. 12 shows convolution of images shown in Fig. 8 and

corresponding edge maps. Notice how each of the edges in

the original image turn white in this image.

Fig. 12. Edge detection of the image and template shown in Fig. 9.

Fig. 13 shows the final result of the normalized template

match. The areas where correlation scores are good turn

white and the areas where the score is bad, remain black.

The higher the cross-correlation score, the brighter (close to

white) the pixel in the output image. As it can be seen, there

has been a good correlation of the template in the areas

where there were cars in the original image.

Fig. 13. Template match result. Brightness indicates good correlation.

B. Implementation details

Table I gives the details of the system that was used for

benchmarking. We used a system with Intel Pentium 4

processor clocked at 3.0 GHz and having 2 GB DDR2

memory. The system had a GPU by NVIDIA GeForce

GTX465 running at 1.2GHz with 1GB DDR5 memory.

TABLE I

Bhagya et al.

38

SPECIFICATIONS OF SYSTEM USED FOR BENCHMARKING

CPU

Vendor Intel

Model Pentium 4

Memory 2 GB DDR2

GPU

Vendor NVIDIA

Model GeForce GTX 465

Memory 1 GB GDDR5

We used the C programming language to implement the

pipeline. The video input / output was taken care by

OpenCV 2.2 library. We used NVIDIA’s implementation of

the OpenCL library to write kernels that ran on the GPU.

C. Performance analysis

We used the pipeline to build a content based video

search application. The application, as the name suggests,

searches for a template in a given video and displays the

results in real time. It highlights the areas inside the video

wherever a match is found.

Performance was analyzed in terms of two parameters:

speed and quality.

Fig. 14 shows a comparison between GPU time and CPU

time, taken to process a frame by the pipeline of varying

size. The template size is kept constant at 100 x 100 pixels

and the image dimensions are varied.

Fig. 14. Time taken by CPU and GPU vs Image dimensions

As it can be seen, the time taken by the CPU rises

exponentially whereas the time taken by the GPU remains

almost constant as the image size scales.

Fig. 12 shows a comparison between GPU and CPU time,

taken to process a frame of 480x640 pixels with varying

template sizes.

Fig. 15. Time taken by CPU and GPU vs Template dimensions

The results are similar to the ones shown in Fig. 14. When

the template size is increased, the time taken by the CPU

increases exponentially whereas the time taken by the GPU

remain almost constant. It is independent of the template

size.

Fig. 13 shows a ratio of time taken by the CPU and by the

GPU for a fixed template of size 100 x 100 pixels and

frames of varying size.

Fig. 16. Ratio of time taken by CPU and GPU vs Image dimensions

For smaller images, the gain by using a GPU based

pipeline is not as significant as with larger images. After

crossing a certain image size, the speedup remains almost

constant. As it can be seen, full HD videos can also gain up

to 90 times with a GPU based pipeline.

Fig. 14 shows a quality metric. It shows how well the

algorithm works for different video qualities. It is done by

blurring the input video at multiple levels and then

performing template match.

Optimization of countour based template matching using GPGPU based hexagonal framework 39

Fig. 17. Image blurring percentage vs matching percentage

The blur applied to each image is a Gaussian blur. As

long as the images do not have a high blur (say > 25%), the

template match pipeline was able to find the template

correctly.

Table II shows how the template match algorithm

behaves when subjected to images of different edge density.

Different edge intensities have been simulated by varying

the edge detection threshold of the images. Thus, images

with a low threshold behave similar to images with very

high edge density. And images with a high threshold have a

very few edges.

TABLE II

TEMPLATE MATCH RESULTS FOR IMAGES WITH DIFFERENT

EDGE CHARACTERISTICS

Image Threshold Result

500 Not Matched

1000 Not Matched

1500 Matched

2000 Matched

2500 Matched

3000 Matched

3500 Matched

4000 Matched

4500 Matched

5000 Matched

5500 Matched

6000 Matched

6500 Not Matched

7000 Not Matched

7500 Not Matched

Thus images with very high edges and very few edges are
not matched accurately. A similar behavior is observed with
a constant image and varying template qualities.

TABLE III

TEMPLATE MATCH RESULTS FOR TEMPLATES WITH

DIFFERENT EDGE CHARACTERISTICS

Template Threshold Result

500 Not Matched

1000 Not Matched

1500 Not Matched

2000 Matched

2500 Matched

3000 Matched

3500 Matched

4000 Matched

4500 Matched

5000 Matched

5500 Matched

6000 Matched

6500 Matched

7000 Not matched

7500 Not matched

The template behavior is similar to the image behavior.
Thus if the templates have too many edges or too few edges,
the pipeline will fail to identify the template in a given set of
images or video frames.

VI. CONCLUSION AND FUTURE SCOPE

The project is aimed towards optimizing contour based

template matching. By the proposed pipeline, we have been

able to implement a hexagonal framework on a GPU.

Hexagonal framework reduces amount of data to be

processed and thus offers performance gain without loss of

accuracy. Using the GPU’s parallelism, we have been able

to search for template in frames in less than 10 ms (100

frames per second). The quality of template match suffices

if both the template and the image have moderate edge

characteristics.

Since processing time for a frame can go up to 33 ms for

a frame (keeping in mind the real time limit of 30 frames

per second), there is a scope for utilization of the remaining

time and GPU computing power. It can be used for

considering other attributes such as scaling and rotation of

templates on the runtime. For instance, given a template, the

GPU should be able to compute the edge map of the

template, rotated at various angles. And templates at all the

rotations can then be searched for in the input images or

video frames.

ACKNOWLEDGMENT

We’d like to thank the Department of Computer Science
and Engineering, NITK Surathkal for providing us an
opportunity and the infrastructure that was required to
accomplish this project.

Bhagya et al.

40

REFERENCES

[1] R Brunelli, “Template matching and testing” in Template Matching
Techniques in Computer Vision: Theory and Practice, West Sussex,
U.K.: Wiley, 2009.

[2] L. Middleton et al., Hexagonal Image Processing: A Practical
Approach., U.S.A.: Springer, 2005.

[3] Gonzalez et al., Digital Image Processing, vol. 2, New Jersey:
Prentice Hall, 2002.

[4] Vidya et al., “Performance Analysis of Edge Detection Methods on
Hexagonal Sampling Grid,” Dept. ECE, Amrita Vishwa Vidya
Peetham, Coimbatore, 2009.

[5] Lee Middleton et al, “Edge Detection in a Hexagonal-image
Processing Framework”, Dept. Elect. Eng., Univ. of Auckland,
Auckland, 2004.

[6] P.J.H.M. Boots, “Object Recognition by Contour Matching”, 2002.

[7] Chia-Yen Chen, “Image Stitching – Comparison and New
Techniques”, University of Auckland, 1998.

[8] J. P. Lewis, “Fast Normalized Cross Correlation”, 1995.

[9] Timothy Poston, “Hexagonal Cell Management”, unpublished.

[10] Longin Jan Latecki, “Template Matching”. Temple University.

[11] Dmitrij Csetverikov, “Basic Algorithms for Digital Image Analysis: A
course”, Eotvos Lorand University.

[12] NVIDIA, “OpenCL programming guide”, v3.1.

[13] Khronos OpenCL working group, “The OpenCL specification”, v1.1.

[14] Victor Podlozhnyuk, “Image Convolution on CUDA”, NVIDIA.

