
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 8 (2016) pp. 235-246

© MIR Labs,www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

RAID: Robust Algorithm for stemmIng text

Document

Kabil BOUKHARI1 and Mohamed Nazih OMRI2

1MARS Unit of Research,

Department of computer sciences

Faculty of sciences of Monastir,

University of Monastir, 5000, Tunisia

kabil.boukhari@gmail.com

2MARS Unit of Research,

Department of computer sciences

Faculty of sciences of Monastir,

University of Monastir, 5000, Tunisia

Mohamednazih.omri@fsm.rnu.tn

Abstract: In this work, we propose a robust algorithm for

automatic indexing unstructured Document. It can detect the

most relevant words in an unstructured document. This

algorithm is based on two main modules: the first module

ensures the processing of compound words and the second

allows the detection of the endings of the words that have not

been taken into consideration by the approaches presented in

literature. The proposed algorithm allows the detection and

removal of suffixes and enriches the basis of suffixes by

eliminating the suffixes of compound words. We have

experienced our algorithm on two bases of words: a standard

collection of terms and a medical corpus. The results show the

remarkable effectiveness of our algorithm compared to others

presented in related works.

Keywords: Robust algorithm, Stemming, Documents

indexing, Information retrieval.

I. Introduction

In recent years, electronic documents have increased both

in the Internet and in corporate intranets. Finding the

information needed here in thus proves a task increasingly

difficult. Often, users are discouraged by the slowness and

inefficiency of traditional search engines available.

Automatic indexing of documents makes it easy and solves

much of the problem.

Automatic indexing is defined as a document

representation of the analysis results of natural language or

standardized language of a document [19][20][21].

Another more classic definition and consonant definition

suggests that automatic indexing is the identification and

location of relevant sequences or major themes in a

document by analyzing its content [22][23][24].However,

other works [25] [26] have shown the existence of

irrelevant concepts for texts.

The indexing phase is subsequently classified using

indexes, the document from a set of documents in a given

collection and retrieving the context of this index within

the document itself . This type of indexing is to optimize

access to data in large databases[1].

In this context, the research is centered on the extraction of

key terms used in the documents to facilitate access and

navigation in web pages and to find the electronic

information. These keywords are used in the process of

information search to get relevant answers to questions[2].

The questions that arise are of the form: Can we find this

document? How well the documents are relevant? Do they

meet user needs?

To answer these questions, the system must take the user

input in the form of key terms and linking them to

information contained in the documents.

The recovery technique paves the way for a possible

inquiry about the fact if any given document and a given

query share a particular keyword or not. The obvious

answer is simply tested for absolute equality between the

keyword and all terms in the document. It is only after the

confirmation of an existing similarity is found that

automatic indexing retrieves it.

However, the terms key can have many morphological

variants that share the same semantics and can be

beneficial for the information retrieval system to consider

these equivalent terms. To recognize these variations, as in

[3][33]the system needed terms in a natural form in order

to treat them. A form of natural language processing,

which may be opted for to carry out this task, can be an

algorithm that transforms an end to its morphological root

via the removal of prefixes and suffixes[4]. Here we can

talk about stemming.

Then the purpose of an information retrieval system (IRS)

[30][31][32] is to find the most relevant documents that

correspond to the user’s queries given the large number of

mailto:kabil.boukhari@gmail.com
mailto:Mohamednazih.omri@fsm.rnu.tn

236 BOUKHARI, OMRI

documents on the Internet. So, to improve the performance

of an IRS, it is essential to develop a new stemmer for a

more relevant and accurate indexing system.

The techniques used[5] are generally based on a list of

affixes (suffixes, prefixes, postfix, antefixes) of the

language in question and on a set of stemming/de-

suffixation rules constructed already, that allow the finding

of the stem of a word.

Several algorithms have been proposed for research lexical

root for the English language. The main algorithms

developed in this senseare the LOVINS, Paice, Husk,

PORTER, EDA and Krovetz algorithm's.

Part of the focus of this work is the study of two standard

algorithms, namely LOVINS algorithm and that of

PORTER. We present the definition and the principle of

each of the five algorithms.

As for stemming algorithms, there is no perfect algorithm

that meets user needs for different corpus. Meanwhile, this

algorithm allows the indexing process of non–structured

documents.

The focal blemish of de-suffixation algorithms that are

developed so far is their lack of producing one hundred

percent reliable results (lack of precision): same context

words do not have the same stems. We noticed that, on the

one hand, in the stemming process, there is no phase of

treatment for compound shapes, and on the other hand,

several suffixes are ignored and are not, therefore, treated,

which is the case of the LOVINS algorithm.

This paper is divided into fourparts. After the introduction,

the second presents the stemming phase of the unstructered

documents. The third part devoted to the presentation of

the best-known stemming algorithms in literature, this

section will be concluded by a comparative study of

different algorithms and their limits. Part four presents the

proposed algorithm, inspired from the SAID approach[27],

for stemming words of a text. The fifth paragraph presents

the experimental data, the results obtained and provides a

detailed analysis of these results. We finish this work by a

conclusion and we give the perspectives of the future work.

II. Stemming

The label stemming or de-suffixation is given to the

process that aims to transform the inflections in their

radical or stem. It seeks to bring together the different

variants, inflectional and derivationnel, of a word around a

stem.

The root of a word corresponds to its remaining part,

namely its stem, after the removal of its affixes (prefix

and/or suffix). It is also sometimes known as the stem of a

word. Unlike the lemma that corresponds to a real word in

the language, the root or stem is generally not a real word.

For example, the word "relation" has "rel" as a stem which

does not correspond to a real word but in the example of

"greatest" the radical or stem is "great".

The stemming is an important stage for the indexing

process [6][7]. De-suffixation algorithms have been

developed to effectively treat a given problems (slow

response time, numerous documents, lack of precision).

These algorithms are designed to identify the roots of the

words through a set of rules and conditions.

Stemming operation consists of removing inflectional and

derivational suffixes to reduce the various forms of a word

at their root. This root must be included in a morphological

sense: two words might share or have the same

morphological root and completely different meanings.

The techniques used are generally based on a list of affixes

of the language at hand as well as a set of de-suffixation

rules priory built that allow the finding of a stem of a given

word.

Search engines use stemming algorithms to improve

information retrieval[8]. The keywords of a query or

document which are represented by their roots rather than

by the original words. As in [9] several variations of a term

can thus be grouped into a single representative form,

which reduces the size of the dictionary, and then the

number of distinct words needed to represent a set of

documents. A dictionary of reduced size saves both space

and execution time.

There are two main families of stemmers: the algorithmic

stemmers and dictionary-based stemmers: algorithmic

stemmer is often faster and can extract the roots of

unfamiliar words (in a sense, all found words are

unfamiliar to it). However, it will have a higher error rate,

grouping sets of words that should not be together (over-

Stemming). A dictionary based stemmer where the number

of error on known words is almost zero. It is also slower

and requires the removal of suffixes before looking for the

corresponding root in the dictionary.

The de-suffixation algorithm functions on different steps

through which the words to process successively pass,

according to the rules, when the parser recognizes a suffix

from the list, it removes or transforms it. Here the longest

suffix which determines the rule to be applied. Each

algorithm has its own steps and its different rules.

III. Related works

Different Stemming algorithms [10] have been proposed

in literature.

The first algorithm that we treat is Husk and Paice's

algorithm [11][12] and belongs to the family of

algorithmic stemmers. It is a simple iterative Stemmer, it

removes the suffixs from a word in an indefinite number

of steps.

This is algorithm based on a set of rules to extract roots

with more stores outside the rules of the code. On each

iteration, it tries to find an applicable rule by the last

character of the word.

This approach consists of a set of functions that will use

the root extraction rules applicable to the input word and

check the acceptability of the proposed root, and the set of

rewrite rules. The main function takes as parameters the

word that we want to extract, the root and the code of the

language.

The second algorithm treated is EDA anddeveloped by

Didier Nakache et al. [13]. It is used to de-suffix medical

corpus in french. It works in two main phases: a phase of

RAID: Robust Algorithm for stemmIng text Document 237

preparation and a phase of harmonization of the form

followed by a phase of treatment.

The first phase serve to prepare the word to be stemmed by

applying some modifications:

1. transformation in lowercase,

2. separation of ligated characters and hyphens,

3. removal of diacritics.

4. removal of double letters.

5. replace some letters by others according to rule.

This first phase allows to cleans the term and puts it into a

‘standard’ form, The removal of accents used to group

many terms that were considered, in advance, as different.

And the last three preparation rules allow only to correct

typing errors and errors induced by change case.

The second phase serve to execute a set of rules. It is

important to follow these rules in order, until the resulting

Word contains 5 characters or otherwise, up to the last rule.

Each rule applies to the result obtained by the previous rule.

The third algorithm is Krovetz [14], which is considered as

a "light stemmer" because it uses inflectional language

morphology. It's a low strength algorithm and complicated

due to the processes involved in linguistic morphology and

its inflectional nature.

The area of morphology can be broken down into two

subclasses, inflectional and derivational. Inflectional

morphology describes predictable changes a word

undergoes as a result of syntax (the plural and possessive

form, past tense…). These changes have no effect on a

word’s ‘part-of-speech’ (a noun still remains a noun after

pluralizations). In contrast, changes of derivational

morphology may affect /may not affect a word’s meaning.

Although English is a relatively weak morphological

language compared to other languages have stronger

morphology where thousands of variants may exist for a

given word. In such a case the retrieval performance of an

Information Retrieval system [35] would be severely be

impacted by a failure to deal with such variations.

“Krovetz”removes effectively and specifically suffixes:

 The conversion of a plural to its singular form (e.g:

'-ies', '-es', 's').

 The conversion of past to present time (e.g: '-ed').

 The elimination of '-ing', then through a

verification process in a dictionary for any

recoding and returns the word stem.

This Stemmer is often used in conjunction with any other

"Stemmers" taking advantage of the accuracy of removal

of suffixes by this algorithm. Then, it adds the compression

of an another "Stemmer" like the Paice/Husk algorithm or

PORTER.

The PORTER algorithm [15][16] is the fourth one we have

studied. It is the most famous stemming algorithms which

can eliminate the affixes of words to get a canonical form

 of the latter. This algorithm is used for the English

language, but its effectiveness is very limited when it

comes to treating the French language, for example, where

the inflections are more important and more various.

The PORTER algorithm consists of fifty Stemming rules

classified into seven phases (treatment of plurals and verbs

in the third person singular, the past and the progressive

treatment,...). The words to be analyzed pass through all

the stages and, in the case where several rules may be

applied to them, this is always the longest suffix is chosen.

The de-suffixation is accompanied, in the same stage of

recoding rules.

Thus, for example, "troubling" will become "troubl' by the

removal of the progressive marker suffix ‘– ing’ and will

be then transformed into "trouble" by application of the

rule "bl" becomes "ble". This algorithm includes also five

context rules, which indicate the conditions in which a

suffix should be omitted. The ending ‘-ing’, for example,

will not be removed unless the radical has at least a vowel.

In this way, "troubling" will become 'troubl', while "sing"

remains "sing".

The use of the term in an inflected language, it gives

inflections. Inflexion is a morphological modification of a

term to mark the grammatical position, the tense of

conjugation... For example, the verb “play” inflectes in

“played” when it is placed in a sentence in the past with all

persons, in the singular and the plural. The word “baby”

inflects in “babies” in the plural.

PORTER has been developed to permit the application of

the rules defined in a particular syntax on inflected words.

The application of rules allows for morphological

transformations in order to obtain a standardized version

from a flexed release.

A new version of PORTER [17] has been developed to

improve the original stemming algorithm. The objective of

the Stemming is to find the common canonical form for

inflected words.

The last algorithm studied is the LOVINS algorithm [18],

which has 294 suffixes, 29 conditions and 35

transformation rules and where each suffix is associated

with one of the conditions. In the first step, if the longer

ending found satisfies its condition associated therewith,

the suffix will be eliminated. In the second step, the 35

rules are applied to transform the suffix. The second step

is performed whether thesuffix is removed in the first step

or not.

For example, “nationally” has the suffix “ationally”, with

associated condition, B, ‘minimum length of stem = 3’.

Since Remove 'ationally' leaving a stem with a single

letterthen this condition is rejected. But it also has ending

“ionally” with associated condition A. Condition A is ‘no

restriction on stem length’, so “ionally” is removed,

leaving “nat”.

The transformation rules handle features like letter

undoubling, irregular plurals and English morphological

oddities ultimately caused by the behaviour of Latin verbs

of the second conjugation.

The stems are grouped according to the length of 11

characters up to 1, each termination is followed by its

238 BOUKHARI, OMRI

condition code. There is an implicit assumption in each

condition, is the length of the root must be at least equal to

2 characters.

An other version of Lovins Stemmer : The Dawson

stemmer [34]. This approach is similar to Lovins as it is a

single-pass context-sensitive suffix removal stemmer. The

main aim of the stemmer was to take the original

algorithm proposed by Lovins and try to refine the rule

sets to correct any basic errors that exist.

The first step is to include all plurals and combinations of

the simple suffixs, this increased the size of the suffixs list.

The second phase is to employ what Dawson called the

completion principle in which any suffix contained within

the ending list is completed by including all variants,

flexions and combinations in the ending list. This

increased the ending list once more , although no record

of this list is available.

A similarity with the Lovins stemmer is that every suffix

contained within the list is associated with a number that

is used as an index to search an list of exceptions that

enforce certain conditions upon the removal of the

associated ending. These conditions are similar to the

Lovins algorithm in that they may enforce either a

minimum length of the remaining stem or that the suffix

can only be removed/shall not be removed when set letters

are present in the rest of the stem.

The major difference between the Dawson and Lovins

approach is the technique used to solve the problem of

spelling exceptions. Lovins uses the technique known as

recoding. This process is seen as part of the main

algorithm and performs a number of transformations

based on the letters within the stem. In contrast Dawson

uses partial matching which, as described above, try to

match stems that are equal within certain limits. This

process is not seen as part of the stemming algorithm and

therefore must be implemented within the information

retrieval system. Dawson warns that without this

additional processing many errors would be produced by

this stemmer.

Although PORTER and LOVINS are known by their

power they still face many problems .

For the PORTER stemmer the main poblem is when many

words derived from the same root do not have the same

stem. This is due essentially to the fact that PORTER

stemmer ignores many cases and disregards many

exceptions. In addition, PORTER stemmer does not treat

irregular verbs, Irregular plural nouns are not handled by

the stemmer: words ending with ‘men’ are the plural of

words ending with ‘man’. Many exceptions are not

controlled: verb conjugation, possessive nouns, irregular

comparative and superlative forms (e.g. good, better, best),

etc. Moreover, many suffixes are not handled by this

alogorithm. This would decrease the stemming quality,

since related words are stemmed to different forms.

The main limitations detected in LOVINS's algorithm can

be summarized in the following points: disregard of

compound words (childhood, relationship, chairman ...),

several missing suffixes for different lengths, the

elimination of doubling of characters (LOVINS is not

taken into account 10 letters of the alphabet) and

insufficient processing rules. The LOVINS algorithm, for

example, ignores the words of compound shapes

(Compound Words), the suffixes of these words can be

classified by length, and a set of words in same context

must have the same stem.

In an information retrieval context, such cases reduce the

performance since some useful documents will not be

indexed with some terms, This would decrease the

efficiency of diverse indexing systems applying those

stemmers.

IV. RAID: Robust Algorithm for stemmIng text

Document

In order to improve performance stemmers, we studied the

English morphology, and used its characteristics for

building a new stemmer capable to improve information

retrieval systems and indexing systems.

The study conducted in the previous paragraph on

stemming algorithms has enabled us to identify the

advantages and disadvantages of each of these algorithms.

We focused in particular the limits presented by the two

best known and most used algorithms namely PORTER

and LOVINS' algorithm. Errors made by these stemmers

may affect the information retrieval performance.

Observing the main stemming algorithms in the literature,

we found that they are based on the best-known suffixes

and the most used ones in the morphology of the English

language. Some cases have not been investigated which

generate the non consideration of a large number of

suffixes (approximately 140 suffixes), and thus

transformation rules have not been set up and were not

considered.

A. Stemmer algorithm « RAID»

Algorithm : RAID

Intializations

F  File of words

CW Compound word

LS List of suffixs

SSuffix of a word

T Transformation

ST Stem

W Word from the corpus

R Rule

DC List of double characters

Functions

Remove_suffix(x,y) : Remove x from the word y

Apply_rule(x,y) : Apply the rule x to the term y

WS(x,y) :Extract the suffix x from the word y

Inputs:

Set of the words

Outputs:

Set of the stemmed words

RAID: Robust Algorithm for stemmIng text Document
239

Treatement :

Begin

while (∃ W in F) do

 STW

 /* Step 1 */

 if (∃ST ∈ CW) then

 STRemove_suffix(CW,ST)

 Endif

 / * Step 2 Determine the location in the list of endings * /

 / * Step 3 Find a correspondence between the word and

one of the suffix endings in the list * /

 if (WS(S,ST) ∈ LS) then

 Suffix_foundTrue

 Endif

 / * Step 4 * /

 if (Suffix_found) then

 STRemove_suffix(S,ST)

 Endif

 / * Step 5 remove doubling if exists / *

 if (WS(S,ST) ∈ DC) then

 STRemove_suffix(DC,ST)

 Endif

 / * Step 6 * /

 if (∃T) then

 STApply_rule(R,ST)

 Endif

 Return (ST)

End while

EndRAID

Algorithm 1. RAID : Robust Algorithm for stemmIng

text Document

For our approach, we proposed to add a phase to treat

compound words and other phase to enrich the basis of

existing suffixes with a new base of suffixes (over 100

suffixes for single words and approximately 40 suffixes for

compound words) identified in the conducted study. We

have defined a set of transformation rules to the set of

words for which we have detected new suffixes.

After the phase of treatment of derivational morphology, a

new base has been composed to treat compound words, it

maps complex terms (term compound of more than one

word) to a single root from which they were derived (e.g.

transform the term ‘businessman’ to ‘business’).

For the elimination of doubling, these algorithms presented

only a few characters that can be doubled but in reality, in

the English language, there are several letters that can mark

the doubling at the end of a Word, for this we have added

the missing characters that can be doubled.

A new rules base, which enriches the old morphological

basis of the English language, represents our third

contribution. We discovered another suffix with a length

equal to 12 that we have considered in the process of our

algorithm development.

Our algorithmis articulated around four stages:

 Checking word if composed or not, whether

elimination of the composition..

 Searches the list of suffixes, correspondence with

the ending of the word to be stemmed, and

application of the correct rule.

 Elimination of doubling there.

 Application of one of the transformation rules and

returns the stemmed word.

B. Treatment of compound words

In this stage, we identified the basic suffixes for compound

words of this language. We have built a new suffixes base

which enrich the former base used by most of algorithms.

This is the first contribution of our approach to stem

compound words.

These algorithms, for example, ignore the words of

compound shapes (Compound Nouns), the suffixes of

these words can be classified by length, and a set of words

in same context must have the same stem.

Example :

Context Original word Result

Context 1

relate

relates

relating

relation

relational

relations

relationship

relationships

rel

rel

rel

rel

rel

rel

rel

rel

Context 2

chair

chairs

chairman

chair

chair

chair

Table 1.Example of treatment of compound words by the

algorithm RAID

According to the previous example, we note that the words

such as "relationship", "relationships" and "chairman" are

not stemmed by the LOVINS algorithm. We then took into

account this limit in order to get around in the proposed

algorithm RAID.

C. Treatment of the ignored suffixes

In this part, we proposed to create a new basis of ignored

and existing suffixes. After experimentation, we found that

the LOVINS algorithm has not processed several suffixes,

like ‘ativistic’, ‘itivness’ ‘iations’,‘itively’, ‘ements’,

‘ition’, ‘ele’, ‘er’… ,and according to the provided result

some affixes are not indicated in this algorithm.

Example:

great  great

RAID: Robust Algorithm for stemmIng text Document
240

greater  greater

greatest  great

greatly  great

241 BOUKHARI, OMRI

For the word "greater", for example, the LOVINS

algorithm ignores the suffix "er". We then have considered

this second limit by applying the correct rule. In each

suffixes class, we identify the most used and most suitable

affixes/endings to our corpus.

D. Transformation rules associated to conditions

In this section, we present 29 conditions, called A to Z, AA,

BB and CC and each condition is associated with a rule.

For the transformation rules, LOVINS suggested a base of

35 rules that aim to transform a suffix in another suffix. We

found that these rules are limited in number because we

have identified other rules in English literature. These

latest transformation rules have been used in our algorithm

RAID.

For the elimination of the doubling, the LOVINS and

Porter algorithms, for example, offers 10 characters that

can be doubled, in fact there are more than 10 characters

which are ignored by these algorithms and which can be

doubled to do this. Hence, we added 10 additional

characters.

Example:

For the word ‘fuzzy’, which has the suffix ‘y’, we apply

the rule ‘B’: eliminate the suffix if the length of the

stem is at least 3 characters then ‘fuzzy’ ‘fuzz’! No

rule of transformation to eliminate doubling ‘zz’.

For a word that has a suffix of length 1, we apply the

rule ‘w’ on the word ‘cliffs’. We get ‘cliff’. LOVINS

algorithm does not allow the elimination of doubling

for the letter ‘f’.

For this we added some rules for the elimination of

doubling

After treatment of the corpus and the provided results, we

were able to extract some other processing rules.

Example:

For the two words in same context ‘flagstaff and

flagstaves’, after the stemming phase, these algorithms

gives ‘flagstaff and flagstav’then according to this

result the new transformation rule will be:

Stav Staf

Same principle to other rules that we have identified.

V. Experimental results and discussion

This part describes the various tests carried out and the

different results obtained. A first exprementations for a

standard database test of English language and a second

for a medical corpus.

A. Experimentation for a standard database test

The development of stemmers aimed to improve indexing

systems performance by transforming terms semantically

equivalent to a single stem. This infers that an efficacious

stemmer should conflate only pairs of words which are in

the same context. The problem is how the algorithm will

distinguish between two words when they are semantically

1 Ci Aclass corresponds to a set of words in the same

context

equivalent. Paice [11] proposed a solution to provide an

input to the program in the form of grouped file. The data

file contains a list of words sorted alphabetically and terms

that are semantically equivalent. A set of words in the same

context forms a group.

If a group of stems contain more than a single root, we can

talk about error 'understemming'. Various tests of

performance of our algorithm RAID were conducted and

compared to PORTER and LOVINS algorithms.

To implement our algorithm, we used DEV c++.We used

a corpus containing approximately 10000 words (Paice

solution),in the English-language database.

For a more detailed analysis, we analyse the structure of

the word list. We find that an important number of words

are related to the derivational morphology. PORTER and

LOVINS ignore many derivational suffixes. This problem

was resolved our proposed approach. RAID stemmer

handles very well derivations and inflections.

Table 2 below shows error rate respectively registered by

PORTER, LOVINS and RAID:

Algorithm

Total

number

of words

Number of

irrelevant

terms

Error

rate

PORTER 9717 5600 0.5763

LOVINS 9717 4909 0.5051

RAID 9717 4210 0.4332

Table 2.Error rate Registered by the algorithms Porter,

Lovins and RAID

According to the results in table 2, we note that for three

algorithms, error rate is important. However, it is clear that

the error rate (over stemming and indestemming) of our

algorithm is significantly lower than that recorded by the

algorithms of LOVINS and PORTER. We notice that the

difference between the approaches is increasingly

important when the number of terms in the basic tests

increases.

Algorithm

Total

number

of

relevant

terms

Relevant

terms

correctly

attributed

to the Ci1

classes

Irrelevant

terms

attributed

to Ci

classes

PORTER 6678 4117 2561

LOVINS 7323 4808 2515

RAID 7756 5507 2249

Table 3. Number of terms extracted by the algorithms

PORTER, Lovins and RAID

From the table as mentioned above, We can make it right

that our algorithm can cover 7756 terms which are

irrelevant terms in 2249 for all classes of the dataset. This

reduction of noise compared to LOVINS and PORTER

RAID: Robust Algorithm for stemmIng text Document
242

algorithms is due to the addition of a number of suffixes

and to the integration of compound words.

To evaluate the performance of RAID, we used three

standard performance measures namely precision, recall

and F-mesaure:

Precision: is the ratio between the number of relevant

terms correctly attributed to the classes Ci (NRTC) and the

total number of relevant terms in the corpus (NTTC) (1).

Recall: is the ratio between the number of relevant terms

correctly attributed to the classes Ci (NRTC) and the total

number of terms (NTT) (2).

F-measure: is the harmonic average that combines

precision and recall (3).

 Precision= NRTC/NTTC (1)

 Recall= NRTC/NTT (2)

F-measure=
2∗(Precision∗Recall)

(Precision+Recall)
 (3)

We have varied the size of the set of terms used from 500

words to 10,000 words in order to study the behavior of

each of the algorithms, in particularly RAID algorithm.

Figure 1. Precision rate of PORTER, LOVINS and RAID

algorithms

We can notice that the RAID algorithm, has an important

advantage for accuracy by reducing noise and the number

of irrelevant terms.

Figure 2. Recall rate of PORTER, LOVINS and RAID

algorithms

The Recall provided by RAID is important also, with a

remarkable superiority over the LOVINS and PORTER

algorithms. Indeed, it reduces the silence factor to meet the

need for information and gives the yearned results.

Figure 3. F-mesasure rate of PORTER, LOVINS and

RAID algorithms

For F-measure rate, we note that RAID is more accurate

than LOVINS and PORTER. This interesting result is due

to the inclusion of the various suffixes, which allow to

improve RAID and to provide more relevant terms,

generally ignored by other algorithms.

B. Experimentation for a medical corpus

To improve the performance of an indexing system [28],

in the preprocessing phase, a stemming algorithm is almost

necessary. The first advantage of this pretreatment is to

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

500 1000 2000 3500 5500 8000 10000

Coefficient of precision

PORTER LOVINS RAID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

500 1000 2000 3500 5500 8000 10000

Recall Rate

PORTER LOVINS RAID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

500 1000 2000 3500 5500 8000 10000

Coefficient of F-measure

PORTER LOVINS RAID

RAID: Robust Algorithm for stemmIng text Document
243

reduce the size of the indexes database or the dictionary

size. And on the other hand with a stemmer, several

244 BOUKHARI,

OMRI

morphological variants of a term can be grouped into a

single representative form. This creates a better indexing.

In this experimental section, we used a medical corpus

contains 10000 from MESH thesaurus [29].

MeSH (Medical Subject Headings) is the National Library

of Medicine's controlled vocabulary thesaurus used for

indexing articles for PubMed.

The word list used was downloaded from the official

website National library of Medicine. The terms of the list

are grouped by context, a set of temrs semantically

equivalent are grouped together.

In this work, we make tests initially with PORTER and

LOVINS stemmers and RAID stemmer in order to

evaluate our approach. The results of these tests are

presented in the following table .

Algorithm

Total

number

of words

Number of

irrelevant

terms

Error

rate

PORTER 10000 3797 0.37

LOVINS 10000 3245 0.32

RAID 10000 2904 0.29

Table 4. Number of terms extracted correctly by the

algorithms Porter, LOVINS and RAID for the medical

corpus

According to the results obtained above, we note that

although the error rate of RAID stemmer is low compared

to the PORTER and LOVINS algorithms.

Figure 4. ERROR RATE of PORTER, LOVINS and

RAID algorithms

The ERROR RATE is the general measure used by

Paice[11] to evaluate the accuracy of a stemmer.

According to this value, the best stemmer would have the

lowest ERROR RATE value compared to the rest. So, if

we take this measure as a general indicator of performance

accuracy, we would have to conclude that RAID is a better

stemmer than PORTER and LOVINS. Consequently,

these stemmers generate more errors than our approach.

According the results provided in the exprimental phases,

we note that an important part of the noise in the results is

caused by the absence of some suffixes and certain rules of

transformations allowing a good stemming. Our algorithm

is able to detect compound words and transform them by

minimizing the noise factor.

Comparing our RAID stemmer to the other approaches

(LOVINS and PORTER stemmer), we find that the new

stemmer not only performs better than PORTER and

LOVINS approaches but also it is more accurate than other

stemmers. In fact, the differences in error rate values are so

important. Regarding the stemmer strength, RAID is

lighter than the LOVINS stemmer. This is beneficial for

the indexing task since this would improve precision.

In the stemming process the number of retrieved

documents increases, because the stem of a term can

represents a large concept semantically equivalent than the

original term. When the document indexing system uses

our new RAID stemmer we perceive an improvement in

indexing effectiveness compared to the PORTER and

LOVINS stemmers.

This improvement can be explained by three main factors:

 the consideration of compound words.

 the addition of the missing suffixes.

 taking into account the doubling and ignored

transformation rules.

VI. Conclusion and future work

The objective of this work is to make contributions to the

Stemming problematic for better indexing of unstructured

documents. As a solution to this problem, we propose a

new algorithm to detect the maximum of relevant words.

Indeed, we have developed a first module for processing

compound words, and a second one for detecting suffixes

that were not taken into consideration by the most

algorithms in literature. Our RAID algorithm enabled via

the transformation phase,detects and remove suffixes

which have not been treated either by the main algorithms

such as PORTER and LOVINS. We have experienced our

algorithm on a standard basis of terms and on medical

corpus. The results were interesting and showed that our

algorithm is more efficient than PORTER and LOVINS

algorithms.

As perspectives for our approach, we propose further study

of irregular verbs, which is not currently taken into

consideration by the most of the algorithms in the literature.

Also, we intend to improve the basis of the terms of

compound words, by adding other suffixes to the English

language in order to standardize the algorithm for the

treatment of different corpus.

0
.3

7

0
.3

2

0
.2

9

P O R T E R L O V I N S R A I D

ERROR RATE

RAID: Robust Algorithm for stemmIng text Document 245

References

[1] M. N. Omri, "Effects of Terms Recognition

Mistakes on Requests Processing for Interactive

Information Retrieval," International Journal of

Information Retrieval Research (IJIRR), vol. 2, no.

3, pp. 19-35, 2012.

[2] A. Kouzana, K. Garrouch, M. N. Omri, "A New

Information Retrieval Model Based on Possibilistic

Bayesian Networks," International Conference on

Computer Related Knowledge : (ICCRK'2012),

2012.

[3] M. Alia, T. Nawal and L. Mourad, "Utilisation d’un

module de racinisation pour la recherche

d’informations en," INFØDays, pp. p.26-28, 2008.

[4] J. Savoy, "Searching strategies for the Hungarian

language," Inf. Process. Manage., p. p 310–324,

2008.

[5] D. Sharma, "Stemming Algorithms: A Comparative

Study and their Analysis," International Journal of

Applied Information Systems (IJAIS) – ISSN :

2249-0868, vol. 4, no. 3, pp. 7-12, 2012.

[6] W. Chebil, L. F. Soualmia, M. N. Omri, S. J.

Darmoni, "Indexing biomedical documents with a

possibilistic network," Journal of the Association for

Information Science and Technology, vol. 66, no. 2,

2015.

[7] W. Chebil, L. F. Soualmia, M. N. Omri, S. J.

Darmoni, "Extraction possibiliste de concepts

MeSH à partir de documents biomédicaux," Revue

d’Intelligence Artificielle (RIA), no. 6, pp. 729-752,

2014.

[8] F. Naouar, L. Hlaoua, M. N. Omri, "Possibilistic

Model for Relevance Feedback in Collaborative

Information Retrieval.," International Journal of

Web Applications (IJWA), vol. 4, no. 2, 2012.

[9] P. Majumder, M. Mitra, S. K. Parui, G. Kole, P.

Mitra and K. Datta, "YASS: Yet another suffix

stripper”.," ACM Transactions on Information

Systems, 2007.

[10] G. G. David A. Hull, "A detailed analysis of english

stemming algorithms," Xerox Research and

Technology, 1996.

[11] C. Paice, "An evaluation method for stemming

algorithms," In Proceedings of the 7th, pp. p 42-50,

1994.

[12] Paice and D. Chris, "Another stemmer," SIGIR

Forum 24, pp. p 56-61, 1990.

[13] D. Nakache, E. Métais and A. Dierstein, "EDA :

algorithme de désuffixation du langage médical,"

Revue des Nouvelles Technologies de l'Information,

pp. p 705-706, 2006.

[14] R. Krovetz, "Viewing morphology as an inference

process," R. Korfhage et al., Proc. 16th ACM SIGIR

Conference, Pittsburgh, pp. p 191-202, 1993.

[15] M. PORTER, " An algorithm for suffix stripping,"

Program: electronic library and information, pp. p

211-218, 2006.

[16] M. F. PORTER, "An Algorithm for Suffix

Stripping," The journal Program, pp. pp.130-137,

1980.

[17] B. A. K. Wahiba, "A NEW STEMMER TO

IMPROVE INFORMATION," International Journal

of Network Security & Its Applications (IJNSA), pp.

p.143-154, 2013.

[18] J. B. LOVINS, "Development of a stemming

algorithm," Journal of Mechanical Translation and

Computational Linguistics, pp. pp. 22-31, 1968.

[19]M.N. Omri. “System interactif flou d’aide à

l’utilisation des dispositifs techniques : Le Système

SIFADE “. PhD, Thèse de l'Université Pierre et

Marie Curie, 1994.

[20] M.N Omri, I. Urdapilleta, J. Barthelemy, B.

Bouchon-Meunier, C.A. Tijus. "Semantic scales and

fuzzy processing for sensorial evaluation studies".

Information Processing And Management of

Uncertainty In Knowledge-Based Systems

(IPMU'96). 715-719, 1996.

[21] M.N. Omri & N. Chouigui. “Measure of similarity

between fuzzy concepts for identification of fuzzy

user requests in fuzzy semantic networks».

International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems. 9(6), 743-748,2001.

[22] M.N. Omri & N. Chouigui. Linguistic Variables

Definition by Membership Function and Measure of

Similarity. Proceedings of the 14th International

Conference on Systems Science 2, 264-273, 2001.

 [23] M.N. Omri.”Possibilistic pertinence feedback and

semantic networks for goal extraction”, Asian

Journal of Information Technology. 3(4), 258-265,

2004.

[24] M.N. Omri. ”Relevance feedback for goal’s

extraction from fuzzy semantic networks”, Asian

Journal of Information Technology. 3(6), 434-440,

2004.

[25] M.N. Omri, T Chenaina. "Uncertain and approximate

knowledge representation to reasoning on

classification with a fuzzy networks based system".

IEEE International Fuzzy Systems Conference

Proceedings. FUZZ-IEEE'99. 3, 1632-1637, 1999.

246 BOUKHARI, OMRI

[26] M.N. Omri. Pertinent Knowledge Extraction from a

Semantic Network: Application of Fuzzy Sets

Theory. International Journal on Artificial

Intelligence Tools (IJAIT). 13(3), 705-719, 2004.

[27] K. BOUKHARI et M. N. OMRI, «SAID : A new

Stemmer Algorithm to Indexing Unstructured

Document,» The International Conference on

Intelligent Systems Design and Applications (ISDA),

2016.

[28] W. chebil, L. F. Soualmia, M. N. Omri et S. J.

Darmoni, «BNDI : a Bayesian Network for

biomedial Documents Indexing with the MeSH

thesaurus,» International Conference on Reasoning

and Optimization in Information Systems, 2013.

[29] M. Sendi, M.N Omri, 'Biomedical Concepts

Extraction based Information Retrieval Model:

application on the MeSH', International Conference

on Intelligent Systems Design and Applications

(ISDA), pp. 1-6, 2016.

[30] F. Fkih et M. N. Omri, «IRAFCA: An O(n)

Information Retrieval Algorithm based on Formal

Concept Analysis,» KNOWLEDGE AND

INFORMATION SYSTEMS, pp. 1-32, 2015.

[31] F. Naouar, L. Hlaoua et M. N. Omri, «Collaborative

Information Retrieval Model Based on Fuzzy

Confidence Network,» JOURNAL OF

INTELLIGENT AND FUZZY SYSTEM, pp. 1-11,

2015.

[32] A. Elbahi, M. N. Omri et M. A. Mahjoub,

«Possibilistic Reasoning Effects on Hidden Markov

Models Effectiveness,» The 2015 IEEE

International Conference on Fuzzy Systems , pp. 1-

9, 2015.

[33] F. Fkih et M. N. Omri, «Complex Terminology

Extraction Model from Unstructured Web Text

Based Linguistic and Statistical Knowledge» IJIRR:

International Journal of Information

RetrievalResearch, pp. 1-18, 2013.

[34] Dawson J. «Suffix removal for word conflation». In

Bulletin of the Association for Literary & Linguistic

Computing. vol. 2(3), pp. 33-46, 1974.

[35] F. Naouar, L. Hlaoua et M. N. Omri, «Possibilistic

Information Retrieval Model based on Relevant

Annotations and Expanded Classification,» 22nd

International Conference on Neural Information

Processing, pp. 1-10, 2015.

Author Biographies

Kabil BOUKHARI He

received his Bachelor’s degree

in computer science, and

Master of Automatic reasoning

system degrees from Faculty of

Sciences of Monastir,

TUNISIA, in 2013. He is PhD

student and a member of

MARS (Modeling of

Automated Reasoning Systems)

Research Unit. His research interests include web

information retrieval and indexing systems.

Mohamed Nazih OMRI

received his Ph.D. in Computer

Science from Jussieu

University, in 1994. He is a

Professor in computer science

at Monastir University. From

January 2011, he served as the

Director of MARS (Modeling

of Automated Reasoning

Systems) Research Unit.

His group conducts research on Approximate reasoning,

Fuzzy logic, Modeling of complex systems, web

information retrieval, Bayesian and Semantic Networks.

http://www.worldscientific.com/doi/pdf/10.1142/S0218213004001752
http://www.worldscientific.com/doi/pdf/10.1142/S0218213004001752
http://www.worldscientific.com/doi/pdf/10.1142/S0218213004001752

