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Abstract: The campaign against drug abuse is fought by all 

countries, most notably on ATS drugs. The identification process 

of ATS drugs depends heavily on its molecular structure. 

However, the process becomes more unreliable due to the 

introduction of new, sophisticated, and increasingly complex 

ATS molecular structures. Therefore, distinctive features of ATS 

drug molecular structure need to be accurately obtained. This 

paper formulates a novel 3D orthogonal Fourier–Mellin 

moments-based molecular descriptor to represent the drug 

molecular structure. The performance of the proposed technique 

was analyzed using drug chemical structures obtained from 

UNODC for the ATS drugs, while non-ATS drugs are obtained 

randomly from ChemSpider database. The evaluation shows the 

proposed technique is qualified to be further explored and 

adapted in the future works to be fully compatible with ATS drug 

identification domain. 

 
Keywords: 3D moments, ATS drugs, drugs identification, 

orthogonal Fourier–Mellin moments, molecular similarity, 

molecular descriptors.  

 

I. Introduction 

Amphetamine-type Stimulants (ATS) drug abuse, such as 

amphetamine, methamphetamine, and substances of the 

“ecstasy”-group, is recognized as universal, disturbing social 

delinquents. The struggles of finding tangible resolution of 

drugs abuse prevention are encountered by every national law 

enforcement authorities, because of the presence of new 

variety or unidentified ATS drugs. Nevertheless, the focus of 

cheminformatics research community is toward the 

advancement of chemical compounds that induces preferred 

biological outcome. Contrariwise, less devotion is 

demonstrated to the molecular similarity search which can be 

used to identify unfamiliar substances. 

Ordinarily, the identification process depends on the 

chemical composition and conformation of a molecule, or 

generally referred as molecular structure. However, relying on 

these criteria alone for identification has been proved to be 

more undependable, mainly because the designs of novel ATS 

molecular structures are continuously more complex and 

sophisticated. Furthermore, it is a challenge for national law 

enforcement authorities and scientific staff of forensic 

laboratories, because present testing unit is very inadequate to 

identify new variety or unidentified ATS drug, in addition to 

likely detecting false negatives. Due to these limitations, it is 

preferable to perform the identification by relying on the shape 

of molecular structures. 

The shape of molecular structures basically can be 

represented by using both of 2-dimensional (2D) and 3-

dimensional (3D) model, which can be described numerically 

using shape descriptors. There are two types of 2D shape 

descriptors, which are boundary-based and area-based. On the 

other hand, 3D shape descriptors are emphasized into volume- 

and surface-based descriptors. It is commonly pronounced 

that 3D shape descriptor as more potent and more correctly 

represents an object’s shape. Thus, this study believes that 3D 

descriptor is capable to identify distinctive features of ATS 

drug’s molecular structure, notwithstanding new variety of 

ATS drug, because of its analogous ring substitutes. 

This paper aims to propose a novel 3D Fourier–Mellin 

moments to represent the ATS drug molecular structure. The 

remainder of the paper is organized as follows. The ensuing 

section will provide a summary of ATS drug molecular 

structure similarity search, while an overview of existing 3D 

shape descriptors and 3D molecular descriptors is provided in 

Section 3. In Sections 4 and 5, the proposed technique is 

introduced and the experimental setup describing the data 

source collection and experimental design are presented 

respectively, while the results are discussed in Section 6. 

Finally, conclusion and future work is drawn in Section 7. 
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II. ATS Drug Molecular Structure 

Representation 

United Nations Office of Drugs and Crime (UNODC) have 

outlined a set of standard methods to perform identification of 

ATS drugs to determine the exact, or at least similar, 

molecular structure. However, forensic laboratories staff 

occasionally doesn’t meticulously follow these standards, 

hence the fluctuations of results attained from different testing 

laboratories is expected. However, most of testing laboratories 

agree that the most effective method for chemical substance 

identification is Gas Chromatography/Mass Spectrometry 

(GC/MS) [1]–[3]. 

Ref. [4] found that GC/MS is imperfect in identifying 

several varieties of ATS drugs, particularly methamphetamine. 

There are two stereo-isomers of methamphetamine, which are 

l-methamphetamine and 

d-methamphetamine. Ref. [5] terms isomers as “one of several 

species (or molecular entities) that have the same atomic 

composition (molecular formula) but different line formulae 

or different stereo-chemical formulae and hence different 

physical and/or chemical properties.” Moreover, GC/MS is 

gradually more powerless in determining numerous 

substances with altered conformations are ATS drugs. 

Whereas l-methamphetamine gives meager 

pharmacodynamics effect, d-methamphetamine in contrast is 

a controlled substance which is frequently abused and 

severely addictive [6]. 

Drugs molecular structure heavily determines the results of 

manual identification process, which is continuously 

deteriorated with the introduction of new chemical 

compositions. Hence, false positive detection of ATS drugs is 

regularly occurred due to the flaws of present drug testing unit. 

Therefore, this study believes that by depending on the global 

shape of the molecular structure, the identification process can 

be refined. Molecular structures are often represented by 2D 

and 3D models. However, the characteristics of the ring 

substitutes in a molecule are imperceptible in 2D model, as 

opposed to 3D model. Hence, the latter is vital in 

discriminating the distinctive features at a ring substitute. 

Geometrical shapes have been used for a long time to 

represent 2D and 3D molecular structures, and these 

geometric shapes can be describe numerically using shape 

descriptors. However, there is another type of molecular 

structure representation in the cheminformatics domain, 

which is known as molecular descriptors. Molecular 

descriptors are acquired after molecules are modeled into a 

molecular representation allowing for mathematical treatment 

[7]. Many researches are confronted by the difficulties in 

extracting the image or object shape features which can 

represent and describing the shape [8]. 

There are two types of molecular descriptors: topological or 

2D descriptors and geometrical or 3D descriptors which 

derived from a geometrical representation. Since a 

geometrical representation comprises information of the 

relative positions of the atoms in 3D space, 3D descriptors 

generally offer supplementary information and more 

discrimination rule than 2D descriptors for same molecular 

structure. There are various 3D molecular descriptors exist, 

such as 3D-MoRSE descriptors, WHIM descriptors, 

GETAWAY descriptors, etc. 

Invariance with respect to labelling, numbering of the 

molecule atoms, and molecule translation and rotation is a 

required property of a molecular descriptor. Furthermore, it 

also must have a clear algorithmically quantifiable definition, 

and the values must be in an appropriate numerical range for 

the molecule set where it is applicable to [9], [10]. Since a 

molecular descriptor is independent of the characteristics of 

the molecular representation, it is possible to consider the 

molecular shape as an image, and thus apply image processing 

to represent the shape of the molecular structure. 

One of the applications of image processing methods to 

represent 2D and 3D image is Moment Invariants (MI), which 

can easily achieve these invariance properties. MI is a special 

case of Moments Function (MF). Moments are scalar 

quantities used to characterize a function and to capture its 

crucial features [11].  The first application of MI to represent 

molecular structure is 3D Zernike descriptors [12]. Although 

it was introduced to represent the molecular surface of protein 

structure, it provides an adequate motivation for further 

exploration of engaging MI as a numerical representation of 

molecule in the computer system, whether it is for molecular 

structure or for molecular surface. 

There are several advantages of MI-based molecular shape 

representation compared to conventional representations. First, 

MI-based descriptors allow for fast retrieval and comparison 

of molecular structures. Second, due to its roto-translation 

invariance properties, molecular structures need not be 

aligned for comparison. Lastly, the resolution of the 

description of molecular structures can be easily and naturally 

adjusted by changing the order of shape descriptors [12], [13]. 

On the other hand, deriving MI from an MF technique is 

rather difficult, since it must satisfy the invariance 

requirements where an object representation must be invariant 

when said object is underwent translation, scale, and rotation 

transformation [14]. Therefore, this study only proposes a 

MF-based instead of MI-based molecular representation 

technique. This is because the development of MI-based 

molecular representation technique will be conducted 

extensively in the future works, and this study will be used as 

the basis of the MI-based technique, should this study exhibit 

satisfactory results. 

Before the proposed technique is described and the 

justification of the results produced is presented, the existing 

MF-based techniques, which are going to be used as the 

comparison for the proposed technique, must be discussed 

first. These existing techniques will be presented the 

following section. 

III. Existing Moments Techniques 

Shape is an important visual feature and it is one of the basic 

features used to describe image content [15], and hence, 

searching for an image by using the shape features gives 

challenges for many researches, since extracting the features 

that represent and describe the shape is an arduous task [8]. In 

pattern recognition problem, there are many shape 

representations or description techniques have been explored 

to extract the features from the object, and one of the most 

commonly used is moments. A decent shape descriptor should 

be able to find perceptually similar shape where it usually 

means rotated, translated, scaled and affine-transformed 
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shapes. Furthermore, it can tolerate human beings in 

comparing the image shapes. 

Moments can be used to generate a set of numbers that 

uniquely represent the global characteristic of an image, and 

has been used in diverse fields ranging from mechanics and 

statistics to pattern recognition and image understanding [16]. 

The use of moments to calculate image features in image 

analysis and pattern recognition was inspired by [17] and [18]. 

Moments are scalar quantities used to characterize a function 

and to capture its crucial features, or from the mathematical 

point of view, moments are projections of a function onto a 

polynomial basis. 

A 2D image is considered as piece-wise continuous real 

function 𝑓(𝑥, 𝑦)  of two variables defined on a compact 

support 𝐷 ⊂ 𝑅 × 𝑅  and having a finite nonzero integral, 

which by extension is also applicable to 3D images. Moments 

of a 2D image 𝑓(𝑥, 𝑦) and 3D image 𝑓(𝑥, 𝑦, 𝑧)  are usually 

denoted by 

𝑀𝑝𝑞 = ∬ 𝑝𝑝𝑞(𝑥, 𝑦)𝑓(𝑥, 𝑦) d𝑥 d𝑦

𝐷

 (1) 

𝑀𝑝𝑞𝑟 = ∭ 𝑝𝑝𝑞𝑟(𝑥, 𝑦, 𝑧)𝑓(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

𝐷

 (2) 

where 𝑝, 𝑞, 𝑟 are non-negative integers, 𝑠 = 𝑝 + 𝑞 in case of 

2D image or s 𝑠 = 𝑝 + 𝑞 + 𝑟 in case of 3D image, is called 

the order of the moment, and 𝑝𝑝𝑞(𝑥, 𝑦) or 𝑝𝑝𝑞𝑟(𝑥, 𝑦, 𝑧) are 

polynomial basis functions defined on 𝐷 . Based on the 

polynomial basis 𝑝𝑝𝑞(𝑥, 𝑦)  or 𝑝𝑝𝑞𝑟(𝑥, 𝑦, 𝑧)  used, there are 

various systems of MF can be recognized. 

Additionally, if the polynomial basis 𝑝𝑝𝑞(𝑥, 𝑦)  is 

orthogonal, specifically if its elements satisfy the condition of 

(weighted) orthogonality 

∬ 𝑤(𝑥, 𝑦)𝑝𝑝𝑞(𝑥, 𝑦)𝑝𝑚𝑛(𝑥, 𝑦) d𝑥 d𝑦

Ω

= 0 (3) 

for any indices 𝑝 ≠ 𝑚  or 𝑞 ≠ 𝑛  and Ω  is the area of 

orthogonality, the MF are categorized as orthogonal moments 

function (OMF) [19]–[22]. The weight function 𝑤(𝑥, 𝑦)  in 

some OMF, however, are not required. Some of the existing 

and well-known MF, including OMF, are discussed in the 

following sections. 

A. Geometric Moments 

The simplest choice of the polynomial basis is a standard 

power basis 𝑝𝑝𝑞(𝑥, 𝑦) = 𝑥𝑝𝑦𝑞  leads to geometric moments, 

first introduced by [17], defined as 

𝑚𝑝𝑞 = ∫ ∫ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦) d𝑥 d𝑦

∞

−∞

∞

−∞

 (4) 

where 𝑝, 𝑞 = 0,1,2 …. The formula can also be generalized to 

3D geometric moments [23] 

𝑚𝑝𝑞𝑟 = ∫ ∫ ∫ 𝑥𝑝𝑦𝑞𝑧𝑟𝑓(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

∞

−∞

∞

−∞

∞

−∞

 (5) 

 

B. Complex Moments 

Complex moments were originally proposed by [24] and later 

extended by [25] due to very little researches devoted to the 

independence of the invariants. The independence of the 

features is a fundamental issue in all the pattern recognition 

problems, especially in the case of a high-dimensional feature 

space. Complex moment 𝑐𝑝𝑞  of the order 𝑝 + 𝑞  of an 

integrable image function 𝑓(𝑥, 𝑦) is defined as 

𝑐𝑝𝑞 = ∫ ∫(𝑥 + 𝑦𝑖̂)𝑝(𝑥 − 𝑦𝑖)̂𝑞𝑓(𝑥, 𝑦) d𝑥 d𝑦

∞

−∞

∞

−∞

 (6) 

where 𝑝, 𝑞 = 0,1,2 …, and 𝑖̂ denotes the imaginary unit. Each 

complex moment can be expressed in terms of geometric 

moments 𝑚𝑝𝑞 as 

𝜇𝑝𝑞 = ∑ ∑ (
𝑝
𝑖

) (
𝑞
𝑗 ) (−1)𝑞−𝑗𝑖𝑝+𝑞−𝑖−𝑗𝑚𝑞−𝑗,𝑝+𝑞−𝑖−𝑗

𝑞

𝑗=0

𝑝

i=0

 (7) 

In polar coordinates, (6) becomes 

𝑐𝑝𝑞 = ∫ ∫ 𝑟𝑝+𝑞+1𝑒 �̂�(𝑝−𝑞)𝜑𝑓(𝑟, 𝜑) d𝑟 d𝜑

∞

−∞

∞

−∞

 (8) 

where 𝑟 = √𝑥2 + 𝑦2  and 𝜑 = arctan (
𝑦

𝑥
)  are the length of 

the vector from the origin to the pixel (𝑥, 𝑦) and the angle 

between the vector 𝑟 and the principle 𝑥-axis, respectively, 

with 𝑟 ∈ [−1,1] and −𝜋 ≤ 𝜑 ≤ 𝜋, and 𝑐𝑝𝑞 = 𝑐𝑞𝑝. 

Recently, [26] proposed a 3D complex moments as the 

extension to 2D complex moments. The 3D complex moments 

can be defined as projections on the corresponding spherical 

harmonics times 𝜚𝑠 

𝑐𝑠𝑙
𝑚

= ∫ ∫ ∫ 𝜚𝑠+2𝑌𝑙
𝑚(𝜃, 𝜑) sin 𝜃 𝑓(𝜚, 𝜃, 𝜑) d𝜚 d𝜃 d𝜑

∞

0

𝜋

0

2𝜋

0

 

𝑠 = 0,1, … 

𝑙 = {
0,2,4, … , 𝑠 − 2, 𝑠 𝑠 is even
1,3,5, … , 𝑠 − 2, 𝑠 𝑠 is odd

 

𝑚 = −𝑙, −𝑙 + 1, … , 𝑙 

(9) 

where 𝜚 = √𝑥2 + 𝑦2 + 𝑧2, 𝜃 = arctan (
𝑦

𝑥
), 𝜑 = arccos (

𝑧

𝜚
), 

𝑠 is the order of the moment equals to 𝑝 + 𝑞 in 2D, 𝑙 is called 

latitudinal repetition equals to the index difference 𝑝 − 𝑞 in 

2D, 𝑚 is a new index called longitudinal repetition, 𝜚2  sin 𝜃 

is the Jacobian of the transformation of Cartesian to spherical 

coordinates 𝜚, 𝜃, 𝜑, and 𝑌𝑙
𝑚(𝜃, 𝜑) is the spherical harmonics 

given as 

𝑌𝑙
𝑚(𝜃, 𝜑) = √

2𝑙 + 1

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃𝑙

𝑚(cos 𝜃) 𝑒 �̂�𝜑 (10) 

where 𝑃𝑙
𝑚 is an associated Legendre function defined as 

𝑃𝑙
𝑚(𝑎) = (−1)𝑚(1 − 𝑎2)

𝑚
2 (

d

d𝑎
)

𝑚

𝐿𝑙(𝑎) (11) 

and 𝐿𝑙(𝑎) is a Legendre polynomial defined as 
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𝐿𝑠(𝑎) = ∑ 𝑐𝑘,𝑠𝑎𝑘

𝑠

𝑘=0

=
(−1)𝑠

2𝑠𝑠!
(

d

d𝑎
)

𝑠

[(1 − 𝑎2)𝑠] (12) 

Since 𝑌𝑙
−𝑚 = (−1)𝑚𝑌𝑙

𝑚 , it can be derived that 𝑐𝑠𝑙
−𝑚 =

(−1)𝑚𝑐𝑠𝑙
𝑚. 

C. Legendre Moments 

Legendre moments were proposed by [27] because Legendre 

moments can be used to represent an image in Cartesian 

domain, with a near zero value of information redundancy 

[28]. Legendre moments of order 𝑝 + 𝑞 is defined as [29] 

𝜆𝑝𝑞

=
(2𝑝 + 1)(2𝑞 + 1)

4
∫ ∫ 𝐿𝑃(𝑥)𝐿𝑞(𝑦)𝑓(𝑥, 𝑦) d𝑥 d𝑦

1

−1

1

−1

 
(13) 

where 𝑝, 𝑞 = 0,1, …. The 𝑠th-order Legendre polynomials are 

defined in (12), which can also be written as 

𝐿𝑠(𝑎) = ∑(−1)𝑘
(2𝑠 − 2𝑘)!

2𝑠𝑘! (𝑠 − 𝑘)! (𝑠 − 2𝑘)!
𝑎𝑠−2𝑘

⌊
𝑠
2

⌋

𝑘=0

 (14) 

The recursive relation of Legendre polynomials, 𝐿𝑠(𝑎), is 

given as 

𝐿𝑠(𝑎) =
(2𝑠 − 1)𝑎𝐿𝑠−1(𝑎) − (𝑠 − 1)𝐿𝑠−2(𝑎)

𝑠
 (15) 

where 𝐿0(𝑎) = 1, 𝐿1(𝑎) = 𝑎 and 𝑠 > 1. 

The set of Legendre polynomials 𝐿𝑠(𝑎) forms a complete 

orthogonal basis set on the interval [−1,1] 

𝐿𝑠(𝑎) =
(2𝑠 − 1)𝑎𝐿𝑠−1(𝑎) − (𝑠 − 1)𝐿𝑠−2(𝑎)

𝑠
 (16) 

where 𝛿𝑝𝑞 is the Kronecker delta. 

3D Legendre moments was proposed by [30] as the 

extension of 2D Legendre moments, which was derived 

directly from Legendre polynomials. Like 2D Legendre, the 

values must be scaled in the region of −1 ≤ 𝑥, 𝑦, 𝑧 ≤ 1. The 

equations of 3D Legendre moments are defined as 

𝜆𝑝𝑞𝑟

=
(2𝑝 + 1)(2𝑞 + 1)(2𝑟 + 1)

8

× ∫ ∫ ∫ 𝐿𝑃(𝑥)𝐿𝑞(𝑦)𝐿𝑟(𝑧)𝑓(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧

1

−1

1

−1

1

−1

 

(17) 

D. Zernike Moments 

The set of orthogonal Zernike moments was first introduced 

for image analysis by [27]. Although it is computationally 

complex if compared to other moment functions such as 

geometric and Legendre moments, Zernike moments had been 

proven to be superior in terms of their feature representation 

capability, image reconstruction capability, and low noise 

sensitivity [31]. 

Besides that, the orthogonal property also enables the 

separation of the individual contributions of each order 

moment to the reconstruction process. The two-dimensional 

Zernike moments of order 𝑝  with repetition 𝑞  of an image 

intensity function 𝑓(𝑟, 𝜑), are defined as 

𝑍𝑝𝑞 =
𝑝 + 1

𝜋
∫ ∫ 𝑉𝑝𝑞(𝑟, 𝜑)𝑓(𝑟, 𝜑)𝑟 d𝑟 d𝜑

1

0

2𝜋

0

 (18) 

The 𝑝th order Zernike polynomials are defined as 

𝑉𝑝𝑞(𝑟, 𝜑) = 𝑅𝑝𝑞(𝑟)𝑒 �̂�𝑞𝜑 (19) 

𝑅𝑝𝑞(𝑟)

= ∑(−1)𝑘
(𝑝 − 𝑘)!

𝑘! (
𝑝 + |𝑞|

2
− 𝑘) ! (

𝑝 − |𝑞|
2

− 𝑘) !
𝑟𝑝−2𝑘

𝑝+𝑞
2

𝑘=0

 
(20) 

where 𝑝 − |𝑞| is even, 0 ≤ |𝑞| ≤ 𝑝, 𝑝 ≥ 0. 

The set of Zernike polynomials, 𝑉𝑝𝑞(𝑟, 𝜑) forms a complete 

orthogonal set on the interval [−1,1] as 

∫ ∫ 𝑉𝑝𝑞(𝑟, 𝜑)𝑉𝑝′𝑞′(𝑟, 𝜑)𝑟 d𝑟 d𝜑

𝜋

−𝜋

1

−1

= {

𝜋

𝑝 + 1
𝛿𝑝𝑝′𝛿𝑞𝑞′ 𝑝 = 𝑝′, 𝑞 = 𝑞′

0 otherwise

 

(21) 

and its radial polynomials also satisfy the orthogonality 

relation as 

∫ 𝑅𝑝𝑞(𝑟)𝑅𝑝′𝑞(𝑟)𝑟 d𝑟

1

−1

= {

1

2(𝑝 + 1)
𝛿𝑝𝑝′ 𝑝 = 𝑝′

0 otherwise

 (22) 

The Zernike moments was first extended to 3D by [32]. The 

3D Zernike moments can be determined by using the complex 

conjugate of 3D Zernike polynomials defined as 

Ω𝑛𝑙
𝑚 (𝑅) = ∫ ∫ ∫ 𝑍𝑛𝑙

𝑚(𝑅)𝑓(𝑅)𝜚2 sin 𝜃 d𝜚 d𝜃 d𝜑

𝜋

0

2𝜋

0

1

0

 (23) 

The 3D unit-ball Zernike polynomials in spherical 

coordinates is defined as 

𝑍𝑛𝑙
𝑚(𝑅) = 𝑅𝑛𝑙(𝜚)𝑌𝑙

𝑚(𝜃, 𝜑) (24) 

where 0 ≤ 𝑙 ≤ 𝑛, −𝑙 ≤ 𝑚 ≤ 𝑙, 𝑛 − 𝑙 is an even non-negative 

integer number, and 𝑅 = (𝜚, 𝜃, 𝜑)𝑇  is the spherical 

coordinates. 𝑅𝑛𝑙(𝜚)  is the real-valued radial functions, and 

𝑌𝑙
𝑚(𝜃, 𝜑) is the spherical harmonics given in (10). Spherical 

harmonics are orthonormal on the surface of the unit sphere 

per the relation 

∫ ∫ 𝑌𝑙
𝑚(𝜃, 𝜑)𝑌𝑙′

𝑚′(𝜃, 𝜑) sin 𝜃 d𝜃 d𝜑

2𝜋

0

𝜋

0

= 𝛿𝑙𝑙′𝛿
𝑚𝑚′ (25) 

𝑅𝑛𝑙(𝜚) are radial functions constructed by [32] to rewrite 

the Zernike polynomials defined in (20) in Cartesian 

coordinates as 

𝑍𝑛𝑙
𝑚(𝑋) = ∑ 𝑞𝑘𝑙

𝑣 ‖𝑋‖2𝑣𝑒𝑙
𝑚(𝑋)

𝑘

𝑣=0

 (26) 

where 2𝑘 = 𝑛 − 𝑙, 0 ≤ 𝑣 ≤ 𝑘, and 𝑋 denotes the vector 𝑋 =

(𝑥, 𝑦, 𝑧)𝑇. Here, 𝑒𝑙
𝑚 are the harmonic polynomials defined as 
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𝑒𝑙
𝑚(𝑋) = 𝜚𝑙𝑌𝑙

𝑚(𝜃, 𝜑) 

= 𝜚𝑙𝑐𝑙
𝑚 (

𝑥𝑖̂ − 𝑦

2
)

𝑚

𝑐𝑙−𝑚

× ∑ (
𝑙

𝜇
) (

𝑙 − 𝜇

𝑚 + 𝜇
) (−

𝑥2 + 𝑦2

4𝑐2
)

𝜇
⌊
𝑙−𝑚

2
⌋

𝜇=0

 

(27) 

where 𝑐 = 𝑥 + 𝑦𝑖̂  is the complex variable and 𝑐𝑙
𝑚  is 

normalization factors defined as 

𝑐𝑙
𝑚 = 𝑐𝑙

−𝑚 =
√(2𝑙 + 1)(𝑙 + 𝑚)! (𝑙 − 𝑚)!

𝑙!
 (28) 

while the harmonic polynomials with negative values of 𝑚 are 

defined as 

𝑒𝑙
−𝑚(𝑋) = (−1)𝑚𝑒𝑙

𝑚(𝑋) (29) 

The coefficients 𝑞𝑘𝑙
𝑣  are later determined to guarantee the 

orthonormality of (26) within the unit ball as 

𝑞𝑘𝑙
𝑣

=
(−1)𝑘

22𝑘
√

2𝑙 + 4𝑘 + 3

3
(

2𝑘

𝑘
) (−1)𝑣

(𝑘
𝑣
)(2(𝑘+𝑙+𝑣)+1

2𝑘
)

(𝑘+𝑙+𝑣
𝑘

)
 

(30) 

The orthogonality relation of 3D Zernike polynomials is 

defined as 

3

4𝜋
∫ 𝑍𝑛𝑙

𝑚(𝑋)𝑍𝑛′𝑙′
𝑚′ (𝑋) d𝑋

‖𝑋‖≤1

= 𝛿𝑛𝑛′𝛿;;′𝛿
𝑚𝑚′ (31) 

IV. Proposed 3D Orthogonal Fourier–Mellin 

Moments 

The Fourier–Mellin moments were firstly proposed by [33] 

which is defined in a polar coordinate system (𝑟, 𝜑) . The 

Fourier–Mellin moments can be expressed as 

𝑀𝑝𝑞 = ∫ ∫ 𝑟𝑝𝑓(𝑟, 𝜑) exp(−𝑖̂𝑞𝜑) 𝑟 d𝑟 d𝜑

∞

0

2𝜋

0

 (32) 

where 𝑓(𝑟, 𝜑) is an image function, and the circular harmonic 

order 𝑚 = 0, ±1, ±2, … . The Mellin transform order 𝑝  is 

complex valued. 

Ref. [34] later proposed the orthogonal Fourier–Mellin 

moments. Defined in a polar coordinate system over the 

interior of the unit circle, the orthogonal Fourier–Mellin 

moments were introduced as the generalized Zernike 

moments and the orthogonalized complex moments. The 

authors showed that the performance of orthogonal Fourier–

Mellin moments is superior to that of the Zernike moments in 

term of image reconstruction and signal-to-noise ratio. 

The orthogonal Fourier–Mellin are defined in a polar 

coordinate system over the unit circle as 

Φ𝑝𝑞 =
1

2𝜋𝜌𝑝

∫ ∫ 𝑓(𝑟, 𝜑)𝑄𝑝(𝑟) exp(−𝑖�̂�𝜑) 𝑟 d𝑟 d𝜑

1

0

2𝜋

0

 (33) 

where the circular harmonic order 𝑞 = 0, ±1, ±2, …, and the 

𝑄𝑠(𝑟)  is a radial polynomial in 𝑟  of degree 𝑠 . Ref. [34] 

obtained the polynomials 𝑄𝑠(𝑟)  by applying the Gram–

Schmidt orthogonalization process to the sequence of natural 

powers of 𝑟 over the 0 ≤ 𝑟 ≤ 1 

1, 𝑟, 𝑟2, … , 𝑟𝑠 (34) 

and showed that the polynomials 𝑄𝑠(𝑟) are equal to 

𝑄𝑠(𝑟) = ∑ 𝛼𝑠𝑘𝑟𝑘

𝑠

𝑘=0

 (35) 

𝛼𝑠𝑘 = (−1)𝑠+𝑘
(𝑠 + 𝑘 + 1)!

(𝑠 − 𝑘)! 𝑘! (𝑘 + 1)!
 (36) 

Therefore, the normalization constant in (33) is 

𝜌𝑠 =
1

2(𝑠 + 1)
 (37) 

Here 𝛼𝑠𝑘 are called coefficients of the 𝑠th polynomial with 

𝑠 starting from zero. Note that the radial polynomial 𝑄𝑝(𝑟) 

and the harmonic polynomial exp(−𝑖̂𝑞𝜑)  have irrelevant 

variables 𝑟 and 𝜑, and parameters 𝑝 and 𝑞. 

An alternative method has been proposed by [35] to 

calculate the radial polynomial coefficients 𝛼𝑠𝑘 recursively 

𝛼𝑠0 = (−1)𝑠(𝑠 + 1) 

𝛼𝑠𝑘 = −
(𝑠 + 𝑘 + 1)(𝑠 − 𝑘 + 1)

𝑘(𝑘 + 1)
𝛼𝑠(𝑘−1) 

(38) 

Compared to the original definition expressed in (36), this 

formula is more computationally efficient. Other than 

employing the radial polynomial coefficients 𝛼𝑠𝑘 as stated in 

(35), the radial polynomial 𝑄𝑠(𝑟)  can be calculated 

recursively as well. Its recursive formula was proposed by [36] 

and [37] as 

𝑄0(𝑟) = 1 
𝑄1(𝑟) = −2 + 3𝑟 

𝑄𝑠(𝑟) =

(2𝑟(4𝑠2 − 1) − 4𝑠2)𝑄𝑠−1(𝑟) −

(𝑠 − 1)(2𝑠 + 1)𝑄𝑠−2(𝑟)

(𝑠 + 1)(2𝑠 − 1)
 

(39) 

Derived from (39) directly, the following properties of 

radial polynomial 𝑄𝑠(𝑟) can be determined 

𝑄𝑠(0) = (−1)𝑠(𝑠 + 1) 

𝑄𝑠(1) = ∑ 𝛼𝑠𝑘

𝑠

𝑠=0

= 1 
(40) 

Since the set of 𝑄𝑠(𝑟) is orthogonal over the range 0 ≤ 𝑟 ≤
1 and 

∫ 𝑄𝑝(𝑟)𝑄𝑞(𝑟)𝑟 d𝑟

1

0

= 𝛼𝑝𝛿𝑝𝑞 (41) 

where 𝛿𝑝𝑞  is the Kronecker delta, the basis functions 

𝑄𝑝(𝑟) exp(−𝑖̂𝑞𝜑) in (33) are orthogonal over the unit circle. 

The orthogonal Fourier–Mellin moments can be expressed 

as linear combinations of Fourier–Mellin moments defined in 

(32) 

Φ𝑝𝑞 =
𝑝 + 1

𝜋
∑ 𝛼𝑝𝑖𝑀𝑖𝑞

𝑝

𝑖=0

 (42) 
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The polynomials 𝑄𝑝(𝑟) exp(−𝑖̂𝑞𝜑)  can be expressed as 

complex polynomials in (𝑥 + 𝑦𝑖̂) and (𝑥 − 𝑦𝑖̂) 

𝑄𝑝(𝑟) exp(−𝑖̂𝑞𝜑) = ∑ 𝛼𝑝𝑖(𝑥 + 𝑦𝑖̂)𝑢(𝑥 − 𝑦𝑖)̂𝑣

𝑝

𝑖=0

 (43) 

where 𝑢 =
𝑖−𝑞

2
 and 𝑣 =

𝑖+𝑞

2
. Therefore, the orthogonal 

Fourier–Mellin moments are linear combinations of complex 

moments 

Φ𝑝𝑞 =
𝑝 + 1

𝜋
∑ 𝛼𝑝𝑖𝑐𝑢𝑣

𝑝

𝑖=0

 (44) 

where the complex moments 𝑐𝑝𝑞 are defined in (6). In general, 

the number of zeros of the radial polynomials corresponds to 

the capability of the polynomials to describe high frequency 

components of the image function 𝑓(𝑥, 𝑦). 

Compared with Zernike moments, 𝑄𝑠(𝑟) = 0  has 𝑠  real 

and distinct roots which are nearly uniformly distributed in the 

interior of the unit circle, therefore, it requires a lower order 

of orthogonal Fourier–Mellin moments for the description of 

an image function than that of Zernike moments [34]. The 

most important advantage is that the orthogonal Fourier–

Mellin moments have nearly uniformly distributed zero points 

over the radial interval 0 ≤ 𝑟 ≤ 1, whereas the zero points of 

the Zernike moments are in the region of large radial distance 

from the origin. Hence the Zernike moments have difficulty in 

describing small images [38]. 

This study proposes the extension of Fourier–Mellin 

moments for 3D images. The proposed 3D Fourier–Mellin 

moments is adopting the generalization of n-dimensional 

moments on a sphere [19], [20], and defined as 

Φ𝑛𝑙
𝑚 =

1

2𝜋𝜌𝑛

∫ ∫ ∫ 𝑄𝑛(𝜚)(𝑌𝑙
𝑚(𝜃, 𝜑))

1

0

𝜋

0

2𝜋

0

× 𝑓(𝜚, 𝜃, 𝜑)𝜚 d𝜚 d𝜃 d𝜑 

(45) 

where 𝑄𝑠(𝜚), 𝑌𝑙
𝑚(𝜃, 𝜑), and 𝜌𝑠 are the radial polynomial, the 

spherical harmonics, and normalization constant given in (35), 

(10), and (37), respectively. 

The 3D orthogonal Fourier–Mellin moments are 

implemented in discrete domain for digital images, and thus 

(45) becomes 

Φ𝑛𝑙
𝑚 =

1

2𝜋𝜌𝑛

∑ ∑ ∑ 𝑄𝑛(𝜚)(𝑌𝑙
𝑚(𝜃, 𝜑))

2𝜋

𝜑=0

𝜋

𝜃=0

1

𝜚=0

× 𝑓(𝜚, 𝜃, 𝜑)𝜚2 sin 𝜃 

(46) 

and can be implemented in Cartesian coordinates as 

Φ𝑛𝑙
𝑚

=
1

2𝜋𝜌𝑛

∑ ∑ ∑ 𝑄𝑛(𝑥, 𝑦, 𝑧)(𝑌𝑙
𝑚(𝑥, 𝑦, 𝑧))𝑓(𝑥, 𝑦, 𝑧)

𝑁−1

𝑧=0

𝑁−1

𝑦=0

𝑁−1

𝑥=0

 
(47) 

since 𝜚2  sin 𝜃  is the Jacobian of the transformation of 

Cartesian to spherical coordinates 𝜚, 𝜃, 𝜑 , and after the 

substituting sin 𝜃 𝑒 �̂�𝜑 =
𝑥+𝑦�̂�

𝜚
, and cos 𝜃 =

𝑧

𝜚
. In the next 

section, the performance of the existing and proposed 

techniques on ATS and non-ATS dataset is revealed. 

V. Experimental Setup 

With the goal stated in the section above, an empirical 

comparative study must be designed and conducted 

extensively and rigorously. A detailed description of the 

experimental method is provided in this section. 

A. Dataset Collection 

This section describes the process of transforming molecular 

structure of ATS drug into 2D and 3D computational data 

representation. ATS dataset used in this research comes from 

[2], which contains 60 molecular structures which are 

commonly distributed for illegal use. On the other hand, 60 

non-ATS drug molecular structures, which are randomly 

collected from [39], is used as benchmarking dataset. 

These structures are drawn in 2D molecular structure 

format using MarvinSketch 15.11.9.0 [40]. After the 2D 

molecular structure is created, the structure will be cleaned 

and transformed to 3D molecular structure, also by using 

MarvinSketch. The structure will be then saved as MDL MOL 

file. The MDL MOL file must be then converted to Virtual 

Reality Markup Language (VRML) format, because VRML 

format is the input type required for generating voxel data of 

3D molecular structure. To convert MOL file to VRML file, 

Jmol 14.4.0 [41] is required. VRML file will be then voxelized 

to voxel grid data with 512 voxel resolution using binvox 1.21 

program [42]. An example of 2D and 3D molecular structure 

of ecstasy, one of the ATS drugs, and its voxelized molecular 

structure is shown in Figs. Figure 1, Figure 2, and Figure 3 

respectively. 

 

 
Figure 1. 2D molecular structure of ecstasy drawn using 

MarvinSketch [40] 

 

 
Figure 2. 3D molecular structure of ecstasy converted using 

Jmol [41] 
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Figure 3. 3D molecular structure of ecstasy voxelized using 

binvox [42] 

After the voxel data has been generated, 3D geometric, 

complex, Legendre, Zernike, and orthogonal Fourier–Mellin 

moments are calculated up to 8th order, which produces 165 

features. While the features of 3D geometric and Legendre 

moments are real numbers, 3D complex, Zernike, and 

orthogonal Fourier–Mellin moments on the other hand are 

complex numbers. 

Therefore, these complex numbers must be transformed 

into real numbers, because most of pattern recognition tasks 

only capable to handle real numbers. Ref. [43] proposed a 

method and four techniques to represent complex number as a 

real number, and they found Cartesian bit interleaved, one of 

the proposed technique, as the best representation technique. 

The value of the zeroth-order moments of ecstasy (3,4-

methylenedioxy-methamphetamine), an example of ATS drug, 

for each 3D MF techniques represented using Cartesian bit 

interleaved are shown in Table 1. It should be noted that the 

molecular structure dataset for all formats (MDL MOL, 

VRML, and BINVOX), and computed and represented 3D 

moments are publicly available in [44]. 

B. Operational Procedure 

The traditional framework of pattern recognition tasks, which 

are preprocessing, feature extraction, and classification, will 

be employed in this paper. This paper will compare the 

performance of existing and proposed 3D MF techniques. All 

extracted instances are tested using training and testing dataset 

discussed earlier for its processing time, memory consumption, 

intra- and inter-class variance, and classification of drug 

molecular structure using leave-one-out classification model, 

all of which are executed for 50 times. 

 

Table 1. Cartesian bit interleaved values of zeroth-order 

moments of ecstasy for each 3D MF technique 

MF Original 

Number 

Represented Number 

Geometric 306425 42545721700200699567

041133799352041472 

Complex 16130711836.2

18561 

42576847550484374798

153183560267891362 

Legendre 0.00028538051

9926548 

14175173924443230618

113893434503725056 

Zernike 7708.22998740

4831 

42538108148786362155

157822007266511528 

Fourier–

Mellin 

10277.6399832

06442 

42538543586584499155

255924545490035232 

 

 

To justify the quality of features from each MF technique 

in terms of intra- and inter-class variance, the quartile 

coefficient of dispersion (QCD) of normalized median 

absolute deviation (NMAD) is employed. The intra- and inter-

class variance is a popular choice of measuring the similarity 

or dissimilarity of a representation technique [45]–[48]. The 

QCD measures dispersion and is used to make comparisons 

within and between data sets [49], and it is defined as 

𝑄𝐶𝐷𝑖 =
𝑄3𝑖 − 𝑄1𝑖

𝑄3𝑖 + 𝑄1𝑖

 (48) 

where 𝑄1𝑖  and 𝑄3𝑖  are the first and third quartile of the 𝑖th 

feature set, respectively. Meanwhile, the median absolute 

deviation (MAD) is a robust alternative to standard deviation 

as it is not affected the outliers [50], and it is defined as 

𝑀𝐴𝐷𝑖 = median (|𝑋𝑖 − median (𝑋𝑖)|) (49) 

where 𝑋𝑖 is the set of error values for the 𝑖th feature. However, 

the MAD may be different across different instance, therefore 

it should be normalized to the original 𝑖th feature to achieve 

consistency for different data, such that 

𝑁𝑀𝐴𝐷𝑖 =
𝑀𝐴𝐷𝑖

|𝑥𝑖|
× 100% (50) 

In this study, the intra-class variance is defined as the QCD 

of NMAD for the 𝑖 th feature of a molecular structure 

compared against intra-class molecular structures, and inter-

class variance is defined as the QCD of NMAD for the 𝑖th 

feature compared against inter-class molecular structures.  

On the other hand, the features are tested in terms of 

classification accuracy against well-known classifier, Random 

Forest (RF) [51] from WEKA Machine Learning package [52]. 

RF is employed in this study because previous studies 

conducted by [53]–[55] have found that RF is the most 

suitable for the molecular structure data. In this study, the 

number of trees employed by RF is 165, equals to the number 

of attributes of all 3D MF techniques. 

VI. Experimental Results and Discussion 

The existing and proposed MF techniques will be evaluated 

numerically in this section to evaluate their merit and quality 

in representing molecular structure. Table 2 presents the 

average of processing time, memory consumption, and the 

number of intra-class variance-inclined features relative to the 

total number of features, while Figure 4 present the average of 

classification accuracies from 50 executions. 

 

Table 2. Processing time, memory consumption, and 

percentage of intra-class variance of 3D MF techniques 

MF Processing 

Time 

(ns/voxel) 

Memory 

Consump-

tion (bytes/ 

voxel) 

Intra-class 

Variance-

inclined 

Features 

Geometric 13 419 92.12% 

Complex 39 841 77.58% 

Legendre 16 1195 67.88% 

Zernike 59 4405 64.24% 

Fourier–

Mellin 

44 1923 62.42% 
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Figure 4. Average of classification accuracies of 3D MF 

techniques represented using Cartesian bit interleaved 

 

The results presented in Table 2 show that 3D orthogonal 

Fourier–Mellin performs faster and requires less memory than 

Zernike moments. This is because the computation of radial 

polynomial of orthogonal Fourier–Mellin is less intricate than 

Zernike moments. However, 3D orthogonal Fourier–Mellin is 

slower than geometric and Legendre moments, but almost on 

par with complex moments, because the both complex and 

orthogonal Fourier–Mellin have the same complexity in 

computing the spherical harmonics. However, the number of 

intra-class variance-inclined features of 3D orthogonal 

Fourier–Mellin is the lowest among other 3D MF techniques. 

On the other hand, the classification accuracy of 3D 

orthogonal Fourier–Mellin is higher than 3D geometric and 

complex moments, but not as high as 3D Legendre and 

Zernike moments. Since the classification accuracy is the 

primary consideration of this study, the classification accuracy 

should also be validated statistically. Prior to performing the 

statistical validation, the classification accuracy results should 

be tested for normality. If the results are normally distributed, 

ANOVA can be used to validate the classification accuracy, 

otherwise, Kruskal–Wallis H test should be used instead. In 

this study, the normality of the classification accuracy is tested 

using Shapiro–Wilk test of normality. The result of the test of 

normality is presented in Table 3. 

The results in Table 3 shown that the classification accuracy 

for almost all 3D MF are normally distributed, since the 𝑝 

value of the Shapiro–Wilk test is greater the 0.05, except 3D 

geometric moments. The 𝑝 value for this technique is below 

0.05, and thus the data is significantly deviate from a normal 

distribution. Hence, Kruskal–Wallis H test must be selected 

instead to validate the random forests classification accuracy. 

After the Kruskal–Wallis H test is conducted, it is found that 

there is a statistically significant effect of the classification 

accuracy [𝐻(4) =  206.738, 𝑝 = 0]. Moreover, the ranks for 

the classification accuracy are shown in Table 4, with the post-

hoc results using multiple Mann–Whitney U test statistic are 

shown in Table 5, comparing 3D orthogonal Fourier–Mellin 

moments against other 3D MF techniques. 

 

Table 3. Tests of normality for classification accuracy of 3D 

MF techniques 

MF Statistic df Sig. 

Geometric 0.933 50 0.007 

Complex 0.978 50 0.48 

Legendre 0.973 50 0.305 

Zernike 0.975 50 0.353 

Fourier–

Mellin 

0.981 50 0.596 

Table 4. Ranks for the classification accuracy of 3D MF 

techniques 

MF N Mean Rank 

Geometric 50 71.69 

Complex 50 33.47 

Legendre 50 210.5 

Zernike 50 179.56 

Fourier–Mellin 50 132.28 

 

Table 5. Post-hoc test results using multiple Mann–Whitney 

U tests for the classification accuracy of 3D orthogonal 

Fourier–Mellin against existing 3D MF techniques 

Statistics Geome-

tric 

Com-

plex 

Legen-

dre 

Zerni-

ke 

Mann-

Whitney U 

186 10 123 412 

Wilcoxon W 1461 1285 1398 1687 

Z -7.359 -8.563 -7.792 -5.802 

Asymp. Sig. 

(2-tailed) 

0 0 0 0 

Bonferroni 

Threshold 

0.005 0.005 0.005 0.005 

 

Post-hoc comparisons using multiple Mann–Whitney U test 

on each pair of groups and adjusting the 𝑝  value with the 

Bonferroni method, which is shown in Table 5, indicated that 

there is a statistically significant difference between the 

classification accuracy of 3D orthogonal Fourier–Mellin 

moments and other 3D MF techniques (𝑝 = 0). Therefore, it 

can be concluded that despite 3D orthogonal Fourier–Mellin 

moments cannot achieve the same level of classification 

accuracy of 3D Legendre and Zernike moments, it does indeed 

perform significantly better than 3D geometric and complex 

moments statistically. 

Furthermore, the resource consumption of 3D orthogonal 

Fourier–Mellin is lower 3D Zernike moments, but not as low 

as other existing 3D MF techniques. However, 3D orthogonal 

Fourier–Mellin has the least number of intra-class variance-

inclined features compared to other 3D MF techniques. 

Nevertheless, this study has proposed a new 3D MF technique 

and shown that the proposed 3D orthogonal Fourier–Mellin 

possesses certain potentials to be explored in the future, most 

notably on its invariance properties, despite its mediocre 

performance. 

VII. Conclusion and Future Works 

A new 3D MF technique to represent ATS drug molecular 

structure has been proposed and the extensive comparative 

study to the existing 3D MF techniques has been presented in 

this paper, namely 3D orthogonal Fourier–Mellin moments. 

Despite the experiments have shown that the proposed 

technique performs rather unexceptionally compared to 

existing 3D MF techniques in terms of processing time, 

memory consumption, intra- and inter-class variance, and 

more importantly, classification accuracy, this study 

nonetheless serves as a stepping stone towards better 3D 

molecular structure representation, especially on using 

continuous orthogonal moments defined on a sphere. 

68.32%

71.58%

73.50%

60.43%

63.42%

50.00% 59.00% 68.00% 77.00%

Orthogonal Fourier–Mellin

Zernike

Legendre

Complex

Geometric
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Hence, future works to extend the proposed technique so 

that it has invariance properties and to better represent the 

molecular structure based on this experimental study is 

required. The proposed feature extraction technique will be 

using specifically-tailored classifiers for drug shape 

representation, and ATS drug molecular structure data from 

National Poison Centre, Malaysia, will also be used as 

additional dataset in the future works. 
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