
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 10 (2020) pp. 023-032

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 4 Oct, 2019; Accept: 11 Feb, 2020; Publish: 25 Feb, 2020

Performance Analysis and Comparison of Snort on

Various Platforms

Alka Gupta1, Lalit Sen Sharma2

1 Department of Computer Science and IT,

University of Jammu

 alkagupta48@gmail.com

2 Department of Computer Science and IT,

University of Jammu

lalitsen@yahoo.com

Abstract: Snort has emerged as a reliable technology for

identifying malicious activities in networks. In this paper, a

systematic approach has been followed to estimate the

performance offered by Snort, an open-source network

intrusion detection and prevention system on different

platforms. Extensive experiments are conducted on Windows

Server 2016, Ubuntu Server 16.04 and Virtual Windows Server

2016 to identify the characteristics of the network traffic that

affects Snort’s performance. The study establishes the

incapacity of Snort to cope up with the large packet sizes and

high-speed traffic. It is also found that Snort has tendency to

drop packets on all the Servers for normal as well as malicious

traffic but shows better performs on Ubuntu Server for both

high-speed traffic and different packet sizes. The study

experimentally exhibits poor performance of Snort on Virtual

Windows Server.

Keywords: NIDS, NIDPS, Snort v2.X, D-ITG, Performance,

virtual server.

I. Introduction

An intrusion detection system (IDS) monitors a system or a

network for any malicious activity and report any intrusion

attempt to the system administrator by generating logs. An

Intrusion prevention system (IPS), has an added ability to

block the intrusion attempts by either dropping the malicious

packet, resetting the connection or blocking the source IP of

the malicious packet etc. A system having the properties of

both IDS and IPS are known as Intrusion detection and

prevention system (IDPS). A good IDPS is characterized by

its ability to identify true attacks, less number of false alerts

and low value of dropped packets [1].

IDS are generally classified into host-based and network

based systems. An IDS that is installed on a single system and

monitors incoming traffic to that system only is known as

Host-based Intrusion detection system (HIDS) [2]. Network

based Intrusion Detection System (NIDS) monitor all the

traffic in their network [2] and are installed on a system that

receives all the traffic from switch via mirroring port.

Incoming packets are matched to its rule-set and in case of a

match, an alert is generated and logged. NIDS have better

performance as compared to HIDS [2]. Snort is a popular and

most widely employed IDPS, developed by Martin Roesch. It

was initially launched as a lightweight cross-platform packet

sniffing device [3] and was upgraded to an IDS in 2003. It is a

developmental open source software and has now evolved

into a powerful intrusion detection and prevention system. Its

latest stable version is 2.9.11 and has more than 5 million

downloads till date. Snort releases till now were single

threaded [4] but its new developmental release Snort v3 is

multi-threaded with more enhanced features but is still in its

beta stage.

Snort 2.X is a single-threaded user-level application which

works on TCP/IP stack. It sniffs and examines all incoming

packets in order to identify any malicious activity. It uses

deep packet inspection (DPI) [5] for examining packets

wherein it first inspects the packet header only, but in cases

where this is not sufficient it goes on to examine the packet

payload as well. It works on Windows, Linux and FreeBSD

operating systems. Snort, a signature-based IPS, receives

network packets and normalizes the contents so that a set of

rules can be applied on it to detect the presence of any

intrusion.

In this paper, an evaluation approach has been presented to

measure the performance of Snort on different operating

systems under different traffic conditions. The study

compares NIDPS Snort v2.9.11 on Windows Server 2016,

virtual Windows Server and Ubuntu Server 16.04 for large

packet sizes and high-speed traffic. The effect of more CPU

allocation is also discussed for Snort installed on Ubuntu

16.04 Server. A real network has been set-up to evaluate and

compare the performance based on a series of tests. The

paper is organized into six sections where Section I contains

the introduction, Section II contain the related work done by

other researchers to study and evaluate the performance of

Snort, Section III contain the experiment plan, Section IV

contains the observations and infers the results obtained and

finally Section V concludes the research work.

II. Related Work

In [6], K. Salah and A. Kahtani have evaluated and compared

the performance of Snort on Windows 2003 sever and Linux

A. Gupta and L.S. Sharma 24

platforms in terms of throughput and packet loss. In

Windows, they studied the effect of processor scheduling

parameter on Snort’s performance by configuring it to

allocate more CPU scheduling time to kernel networking

subsystem and user processes. In Linux, different values have

been set for parameter NAPI budget, to study its impact on

performance of Snort. They concluded that under normal

traffic conditions Windows Server outperformed Linux

operating system in terms of throughput but for malicious

traffic, Linux with a small NAPI budget value of 2

outperformed Windows as well as other Linux configurations.

However, the change in processor scheduling had negligible

effect on Snort Performance for Windows.

Salah et al. in [7] have compared Snort’s performance on

Windows2008 Server and Windows7 to help choose the best

configuration for Snort. They evaluated Snort’s performance

under UP (uni-processing) and SMP (Symmetric

multiprocessing) environments and studied the effect of

processor affinity on it. Under UP environment,

Windows2008 gave better throughput as compared to

Windows7 for low traffic rates but at higher rates, both of

them performed poorly due to lack of CPU availability. Snort

under SMP environment showed significantly better

throughput than UP environment and the throughput further

increased with static affinity rather than default dynamic

affinity. They have not studied the effect of large packet size

and high speed traffic on the performance of Snort for

Windows Server.

The effect of varying packet size and rule set size on

Snort’s performance has been studied in [8] and different

methods have been suggested to reduce the dependency of

Snort’s performance on increase in rule-sets. She proposed

the use of sparse banded matrix data structure for

implementing pattern-matching in Aho-Corasick algorithm of

detection engine to increase both memory as well as time

efficiency of the system. The reduction in memory

requirements was intended to avoid cache misses and to make

room for ever-growing number of rule-sets, which in turn

would increase Snort’s performance. However, this resulted

in a more complex implementation of the data structure which

required more time for starting Snort.

In [9], Snort has been tested for high speed and heavy

traffic and different architectures have been proposed to deal

with the problem of dropped packets and increase

performance. They showed that as the traffic increases,

packet drop rate also increases. Also, for large packets the

packet drop rate is high. They have tested on core i4, i5 and i7

and Windows7 and Windows Server operating systems. Their

tests have focused on Windows OS only whereas Snort

provides various enhanced features when deployed in Linux

OS like barnyard which give better performance.

Waleed Bul’ajoul et al in [10] [11] have established that

when Snort runs in parallel in a multi-processor environment,

its packet drop rate decreases. In their tests, they showed that

when Snort was exposed to heavy and high-speed traffic, the

number of packets analysed by it reduces and its packet drop

rate increases. Similar results were obtained when large sized

packets were run through it. However, when more than one

Snort was run in a multi-processor environment with heavy

and high speed traffic, the packet drop rate was drastically

reduced. They have tested the performance only on Windows

OS and the traffic rate at which they have performed the tests

is very low.

In [12] five different test scenarios have been deployed to

study Snort performance. Testing was done with different

number of packets, different packet-sizes, traffic rates and

combination of above. They observed an increase in the

number of dropped packets with increase in number of

packets to be processed, increase in packet-sizes and traffic

rate. The network speed was less as compared to real

network.

In [13], Snort has been tested in both host configuration as

well as Virtual configurations for different hardware

implementations and operating system by loading the systems

with large packet-sizes and bandwidth. Snort showed lower

detection ability and dropped packets in almost all the

scenarios. Virtual Snort showed poor performance amongst

all and so it was recommended not to use Snort in Virtual

configuration. It was concluded that Snort performance gets

degraded for high volume of traffic above 750 Mbps in all the

network implementations.

In [14] Snort is compared with Suricata on the basis of

scalability and performance. They performed a total of 8600

tests by varying the number of cores used (1 to 24 cores), the

rule-sets used for signature comparison, the workload used to

obtain results and the configuration of both the IDSs. The

metrics used for comparison were packets per second (pps)

as processed by each IDS, the amount of memory used by

each IDS process and the CPU utilization. Results showed

that both Snort and Suricata were scalable but Suricata

outperformed Snort in almost all the test scenarios. Suricata

also exhibited lower average memory usage and lower

average CPU utilization.

Detection accuracy of three popular open-source intrusion

detection systems- Snort, Suricata and Bro-IDS has been

compared and analyzed in [15]. They studied the effect of

number of active rules, different traffic rates and eight types

of attacks on the evaluation efficiency of the Intrusion

Detection Systems and concluded that use of different set of

rules (active rules) for different attack types resulted in

increased accuracy of the IDS. Also, Bro-IDS showed better

performance amongst other IDS systems when evaluated

under different attack types and using a specific set of active

rules.

Snort’s performance is also evaluated for detecting DoS

and Port scan attacks in network [16] Snort has been

evaluated in a high-speed network to determine its efficiency

in detecting network attacks. The performance of Snort on

Ubuntu server is good as it gives 100 % detection rate with

zero false alarms in most of the attacks except Ping of Death.

In [6], [7], [9] and [13], snort has been tested on tested and

compared on windows and Linux operating systems but the

versions on which it is tested are very old. Also with time,

new Snort versions are available with new and modified

rule-sets as per the current threats. This work tests the

performance of Snort on latest Windows and Linux operating

systems along with the latest Snort rule-set to correctly

identify the status of Snort in handling current traffic trends.

Another motivation behind this work is to test Snort’s

performance on cloud platform which is extensively used

these days. None of the previous works have tested Snort’s

performance on cloud platform.

Performance Analysis and Comparison of Snort on various platforms 25

In [9], [10] and [13], the effect of heavy traffic and large

sized packets on performance of Snort has been tested but a

higher traffic rate and large packet size are considered in this

paper.

Our work is different from all the previous work for

various reasons: (1) Snort’s performance of version v 2.9.11

has not been analyzed and compared on Ubuntu 16.04 Server

and Virtual Windows 2016 Server. (2) The traffic rate at

which experiments are carried out is sufficiently high (3)

Studying the impact of different proportions of malicious

traffic on Snort’s performance has not been considered before.

(4) The effect of more CPU allotment on Snort’s performance

in Ubuntu 16.04 Server has not been estimated.

III. Experiment Plan

We aim to evaluate Snort in network intrusion detection

mode by analyzing its performance under high-speed and

heavy load conditions for different operating systems. The

effect of more CPU allocation on the performance of Snort on

Ubuntu Server [17] has also been studied. Snort v2.9.11 is

installed in its default configuration with 9453 rules provided

by Snort Vulnerability Research Team (VRT).

D-ITG used to generate both normal and malicious traffic.

D-ITG (Distributed Internet Traffic Generator) generates

IPv4 packets [18] at application, transport and network layer.

It can generate a packet rate of 75000 packets per second

where size of each packet is 1024 bytes [19].

The study is divided into three tests:

1. Test 1: Snort is tested on Ubuntu 16.04 Server, Windows

Server 2016 and Virtual Windows2016 Server for large

sized packets of 512, 1024, 1536, 2048, 2560 and 3072

bytes for four combinations of normal and malicious traffic.

2. Test 2: Snort is tested on Ubuntu 16.04 Server, Windows

Server 2016 and Virtual Windows2016 Server for high

speed traffic of 5000, 10000, 15000, 20000, 25000 and

30000 packets per second. The four traffic cases described

above have also been considered here.

3. Test 3: The effect of allocation of more CPU time is

studied on the performance of Snort on Ubuntu 16.04

Server.

Test 1and 2 are further divided into four cases to study the

effect of four different proportions of normal and malicious

traffic. Every malicious packet triggers an alert from Snort

whereas normal packets do not generate any alert. The four

traffic combinations are:

 Normal traffic

 TCP and ICMP packets are normal but all UDP packets

are malicious

 UDP and ICMP packets are malicious but TCP packets

are normal

 All TCP, UDP, ICMP packets are malicious.

Three Performance metrics have been used to calculate and

compare Snort performance in different test scenarios. These

metrics are based on the parameters that impact SNORT

performance. The evaluation parameters are:

 Packet drop (%): It is computed as

Packet drop (%) = Total packets dropped by Snort * 100.

 Total packets received by Snort

 Snort efficiency (%): It is the percentage of packets

analysed by Snort and is calculated as:

Snort efficiency = Total packets analysed by Snort * 100.

 Total packets received by Snort

 CPU utilization (%)

3.1. EXPERIMENTAL SET-UP

Three separate experimental test benches have been setup to

test the performance of Snort v2.9.11 on different platforms

in similar network conditions. The system description and

specifications are enlisted in the table 1 below.

D-ITG Traffic

Generator (TCP)

D-ITG Traffic

Generator (UDP)
D-ITG Traffic

Generator (ICMP)

SNORT v2.9.11

 {Host OS}

16-port Switch

Figure 1. Experimental set-up

Machine Description Specifications

TCP

traffic

generator

Dell Intel(R) core(TM)

i3-3110M CPU @

2.40GHz, 8 GB RAM

Ubuntu 16.04

desktop with D-ITG

traffic generator

UDP

traffic

generator

Dell Intel(R) core(TM)

i3-3110M CPU @

2.40GHz, 8 GB RAM

Ubuntu 16.04

desktop with D-ITG

traffic generator

ICMP

traffic

generator

Dell Intel(R) core(TM)

i3-3110M CPU @

2.40GHz, 8 GB RAM

Ubuntu 16.04

desktop with D-ITG

traffic generator

Snort

v2.9.11

Hp Intel(R) core(TM)

i5-3210M CPU @

2.40GHz, 8 GB RAM

Windows Server

2016

Snort

v2.9.11

Hp Intel(R) core(TM)

i5-3210M CPU @

2.40GHz, 8 GB RAM

Ubuntu 16.04

Server

Table 1. System Specifications

Setup 1: The test bench consists of four computers

forming a LAN via a D-link web smart DGS-1210-16 16-port

switch as shown in Figure 1. Three systems have been used as

traffic generators and have D-ITG installed on them, where

each machine is generating packets pertaining to one protocol.

Machine 1 generates TCP packets, machine 2 generates UDP

packets and machine 3 generates ICMP traffic. Snort is

installed on the fourth machine with Ubuntu 16.04 Server as

Host OS.

Setup 2: The test bench is similar to the test bench in Setup

1 except that the Host OS is Windows Server 2016 on which

Snort is installed.

A. Gupta and L.S. Sharma 26

Setup 3: The Virtual Windows Server is set-up on a

commercialized cloud (Azure) with three traffic generators

and a switch. Snort is installed on Virtual Windows 2016

Server. All the machines are Standard_D2s_v3 with 2 VCPU

and 8GB RAM.

IV. Results And Discussions

A. Test 1

For this experiment, TCP, UDP and ICMP packets of

different sizes are sent at a rate of 15000 packets per second

to all the three Servers. Total 1800000 packets of different

sizes are send and number of packets analysed and dropped

by Snort are recorded. Four test cases are considered here, by

sending different amounts of malicious traffic to all the three

Servers under evaluation.

1) Case 1

In this case only normal traffic was used for evaluation. The

results of sending normal traffic is tabulated in table 2(a) for

the three Servers and is graphically represented in Figures 2

and 3. Figures 2 shows that as the size of packet increases

from 512 to 3072 bytes, the packet drop percentage increases.

Also, the values of packet drop percentage is less than 1% for

all the Servers but amongst them, Ubuntu Server shows

better performance by dropping less number of packets. The

CPU utilization increases with the increase in packet size and

is more for Ubuntu 16.04 Server (Figure 3). Snort efficiency

is similar for all the three operating systems in this case.

(a) Normal traffic

 Ubuntu Server Virtual Windows Server Windows Server

Packet

size

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

512 0.0065 99.99 22.07 0 100 20 0 100 22

1024 0.0021 100 25.935 0.009 99.99 25.5 0 100 27

1536 0.0038 100 39.93 0.016 99.98 41.36 0.016 99.98 44

2048 0.004 100 58.88 0.019 99.98 43 0.015 99.99 46

2560 0.004 100 68.68 0.021 99.98 47 0.019 99.98 48

3072 0.0043 100 76 0.024 99.98 54 0.133 99.87 55

(b) UDP malicious traffic

 Ubuntu Server Virtual Windows Server Windows Server

Packet

size

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

512 0.405 99.6 30.28 45.95 54.05 64 0.092 99.91 28

1024 1.165 98.84 38.46 46.065 53.94 69 2.563 97.44 38

1536 1.122 98.88 52.14 47.212 52.79 69 2.867 97.13 56

2048 1.542 98.46 67.08 47.439 52.56 69 3.881 96.12 57

2560 1.38 98.62 76.74 47.2 52.8 76 5.038 94.96 58

3072 2.004 98 84.85 49.59 50.41 76 6.886 93.11 65

(c) UDP and ICMP malicious traffic

 Ubuntu Server Virtual Windows Server Windows Server

Packet

size

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

512 2.7727 97.23 34.76 48.277 51.72 67 2.629 97.37 35

1024 2.1596 97.84 43.02 48.4 51.6 75 5.779 94.22 52

1536 2.7505 97.25 60.4 48.66 51.34 75 9.963 90.04 67

2048 5.64 94.36 71.94 48.7 51.3 76 11.365 88.64 69

2560 11.24 88.76 81.56 48.46 51.54 76 19.6 80.4 70

3072 12.02 87.98 90.95 50.42 49.58 79 26.9 73.1 73

(d) All malicious traffic

 Ubuntu Server Virtual Windows Server Windows Server

Packet

size

Packet

Drop

 (%)

Snort

efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

efficiency

(%)

CPU

Utilization

(%)

512 3.7406 96.26 37.4 48.756 51.24 67.8 3.319 96.68 39

1024 2.9298 97.07 44.85 48.87 51.13 76 3.974 96.03 77

1536 4.6754 95.32 57.12 49.142 50.86 76 6.616 93.38 81

2048 4.5604 95.44 78.01 49.156 50.84 78 16.8 83.2 86

2560 11.077 88.92 91.52 49.17 50.83 79 17.672 82.33 91

3072 20.671 79.33 93.25 53.566 46.43 83 18.864 81.14 96

Performance Analysis and Comparison of Snort on various platforms 27

Table 2. Comparison of three Servers for different packet sizes and different proportions of malicious traffic

2) Case 2

For this case, UDP traffic from UDP traffic generator was

malicious and both TCP and ICMP traffic was normal. The

results are tabulated in table 2(b) and represented in Figures 4

and 5. Figure 4 shows that the packet drop percentage

increases a bit from size 512 to 1024 and is similar for sizes

1024, 1536, 2048 and 2560 bytes and then shows a slight

increase for packet size of 3072 bytes for all the three Servers.

Ubuntu Server shows better performance by dropping less

packets as compared to Windows Server and Virtual

Windows Server. Virtual Windows Server drops almost 48%

of incoming traffic and so almost half of the incoming packets

go unchecked. CPU utilization increases with the increase in

packet size and is maximum for Virtual Windows Server.

Snort efficiency decreases with increase in packet size and is

lowest for Virtual Windows Server.

3) Case 3

In this case, both UDP and ICMP packets are malicious and

TCP traffic was normal. The results are represented in

Figures 6 and 7 and are tabulated in table 2(c). Initially, the

size of packet has very little effect on packet drop percentage

 (512 to 1536bytes) for the three Servers but when size

becomes large, the drop percentage follows a ramp for

Ubuntu and Windows Server. Virtual Windows Server

performs poorly and drops almost half of the packets for all

packet sizes, however, Ubuntu Server shows better

performance as compared to Windows Server (Figure 6).

Snort efficiency decreases with increase in packet size and is

lowest for Virtual Windows Server. The CPU utilization

increases with the increase in packet size and is maximum for

Virtual Windows Server for all packet sizes except 3072

bytes.

Figure 2. Packet drop percentage for normal traffic

Figure 3. CPU utilization for normal traffic

Figure 4. Packet drop percentage for malicious UDP traffic

Figure 5. CPU utilization for malicious UDP traffic

Figure 6. Packet drop percentage for malicious UDP and

ICMP traffic

Figure 7. CPU utilization for malicious UDP and ICMP

traffic

4) Case 4

The traffic consists of malicious packets of TCP, UDP and

ICMP as shown in table 2(d). The results show that small

sized packet have very little effect on packet drop percentage

for the three Servers but when packet size becomes large

(2560 and 3072 bytes), the drop percentage follows a linear

increase for Windows and Ubuntu Servers. Ubuntu Server

shows better performance and Virtual Windows Servers

A. Gupta and L.S. Sharma 28

performs poorly (Figure 8). CPU utilization increases with

increase in packet size and is maximum for Windows Server

(Figure 9). Snort efficiency decreases with increase in packet

size and is lowest for Virtual Windows Server.

Figure 8. Packet drop percentage for all malicious traffic

Figure 9. CPU utilization for all malicious traffic

The performance of Snort is affected by the size of

incoming packets for all the three Servers. The packet drop

increases slightly as we go from 512 to 1024 bytes packets

because as the payload size increases, the amount of time

taken by Snort to process the contents for matching it against

the rule set also increases. As we go from 1024 bytes to 1536

bytes, the packets drop percentage shows a raise. The reason

for this behavior is that a packet of size 1536 bytes undergoes

fragmentation before reaching Snort as its size is greater than

one MTU (Maximum Transfer Unit). Snort takes more time

in processing fragmented packets and so packet drop

increases. Packets of size 1536 and 2048 bytes have similar

values of packet drop but an increase is observed for 2560

bytes as for this size the amount of payload to be matched is

high as compared to other two sizes. With the increase the

packet size from 2560 to 3072 bytes, the packet drop

percentage increases abruptly because for this size each

packet has to be fragmented into three MTUs which need

more processing from Snort.

On comparing Snort’s performance on Windows and

Ubuntu Server, it is found that Snort shows a low

performance on Windows Server for malicious traffic. This is

because of the sub-process of writing alerts on the disk. In

Ubuntu, logs are written in unified2 binary format which are

then read by barnyard2 [20] whereas no such option is

available in Windows. Writing logs in unified2 binary format

is the fastest mode of outputting alert data [21], which takes

less time to write logs thereby increasing Snort processing

efficiency and reducing packet drop rate.

Also, the performance of Snort in cloud environment is

very poor as almost 50% of the packets are dropped. The

prime reason behind the poor performance of Snort could be

convincingly attributed to the fact that all Host Operating

Systems in Cloud are Virtual in nature (i.e. Virtual Machines)

and hence are resource constrained. Given this reason it could

be extrapolated that the performance of Snort in cloud

environment could be improved by making it run on a Virtual

machine with generous amount of computing and memory

resources

 A high value of CPU utilization on a standalone

host is desirable as it indicates better resource utilization but

while working on a shared host, a higher value of CPU

utilization means more waiting time for other processes,

which is a problem. It is deduced from table 2 that Snort on

Virtual Windows Server uses up most of the CPU processing

time which is an undesirable feature as it increases delay for

other processes that require processing on a shared host.

Also, with increase in the content of malicious packets,

both the packet drop percentage and the CPU utilization

increases. As malicious packets require more content

matching time and for each packet an alert is to be written on

the disk, so Snort takes more time in processing them thereby

increasing CPU utilization and Packet drop percentage for all

the three Servers under test.

B. Test2

Equal amounts of TCP, UDP and ICMP packets are send to

Ubuntu 16.04 Server, Windows2016 Server and Virtual

Windows Server 2016 at speeds of 5000, 10000, 15000,

20000, 25000 and 30000 packets per second for 120 seconds.

All the packets are of size 256 bytes. Performance of Snort

has been studied and compared for normal traffic and

different proportions of malicious traffic.

1) Case 1

For normal traffic, all the Servers performed good with no

packet loss for all the different speeds as shown in table 3 (a).

The value of CPU utilization increased with the increase in

speed of sending packets for the three Servers. For small

traffic rate, Windows Server has high CPU utilization but for

high traffic rates, Virtual Windows Server has higher value of

CPU utilization (Figure 10).

2) Case 2

For UDP malicious traffic as shown in table 3(b), Virtual

Windows Server dropped almost half of the packets and

performed poorly in all the cases as depicted by Figures 12.

Ubuntu performed better by dropping less packets. CPU

utilization increased with the increase in speed of sending

packets for both Windows and Ubuntu Servers (Figure 11),

but for Virtual Windows Server it showed very less variation

and was maximum amongst the three Servers.

3) Case3

As shown in table 3(c) when malicious ICMP and UDP traffic

was send, Windows showed poor performance than Ubuntu

by dropping more packets (Figure 13). Virtual Windows

performed poorly again by dropping maximum number of

Performance Analysis and Comparison of Snort on various platforms 29

packets. CPU utilization is highest for Virtual Windows

Server and minimum for Ubuntu Server (Figure 14).

(a) Normal traffic

 Ubuntu Server Windows Server Virtual Windows Server

Packets

received

per second

Packet

Drop

(%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

Packet

 Drop

(%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

Packet

 Drop

(%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

5000 0 100 12.9 0.036 99.96 27 0 100 16

10000 0 100 16.62 0.055 99.95 28 0 100 20

15000 0 100 21.26 0.052 99.95 28 0 100 30

20000 0 100 26.5 0.025 99.98 31 0 100 50

25000 0 100 39.4 0.067 99.93 32 0 100 53

30000 0 100 44.96 0.069 99.93 37 0.0157 100 59

(b) Malicious UDP traffic

 Ubuntu Server Windows Server Virtual Windows Server

 Packets

received

per second

Packet

 Drop

(%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

Packet

 Drop

 (%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

Packet

 Drop

 (%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

5000 0 100 21.33 0.235 99.77 28 39.72 60.28 69.5

10000 0.0987 99.9 25.8 0.9282 99.07 32 45.44 54.56 69.47

15000 0.356 99.64 39.9 0.9519 99.05 33 47.95 52.05 70.88

20000 0.655 99.35 48.06 0.969 99.03 35 48.23 51.77 72.36

25000 1.06 98.94 65.2 1.439 98.56 40 48.786 51.21 75.2

30000 1.876 98.12 74.8 1.54 98.46 42 48.892 51.11 80

(c) Malicious UDP and ICMP traffic

 Ubuntu Server Windows Server Virtual Windows Server

Packets

received

per second

Packet

Drop

(%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

Packet

 Drop

 (%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

Packet

 Drop

(%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

5000 0 100 22.33 0.367 99.63 28 46.4 53.6 70.9

10000 0.0985 99.9 33.35 0.9491 99.05 31 47.67 52.33 72.24

15000 0.156 99.84 52.47 1.207 98.79 34 49.02 50.98 74.32

20000 1.02 98.98 71.35 5.078 94.92 37 49.14 50.86 79.65

25000 1.375 98.63 80.63 8.927 91.07 43 49.26 50.74 80.57

30000 3.52 96.48 93.94 8.6 91.4 52 49.4 50.6 81.21

(d) All Malicious traffic

 Ubuntu Server Windows Server Virtual Windows Server

Packets

received

per second

Packet

Drop

 (%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

Packet

Drop

(%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

Packet

 Drop

 (%)

Snort

Efficiency

(%)

CPU

Utilization

(%)

5000 0.13468 99.87 25 0.0526 99.95 36 46.383 53.62 69

10000 0.14088 99.86 35.11 1.053 98.95 37 48.108 51.89 74

15000 0.36327 99.64 56 0.949 99.05 40 48.886 51.11 74

20000 1.35879 98.64 79.15 1.58 98.42 42 49.257 50.74 83

25000 4.695 95.31 93.2 7.018 92.98 45 49.35 50.65 85.51

30000 9.9978 90 96 19.403 80.6 55 49.49 50.51 85.21

Table 3. Comparison of the three Servers for high-speed traffic and different proportions of malicious data

A. Gupta and L.S.

Sharma

30

4) Case 4

For malicious traffic as shown in table 3(d), Windows Server

continued to perform poorly. However, the dropped packets

increased abruptly for Ubuntu Server and Windows Server at

the speed of 30000 packets per second as in Figure 15. CPU

utilization is high for Virtual Windows Server initially but for

higher traffic rates of 25000 and 30000 packets per second,

Ubuntu Server takes over (Figure 16).

Figure 10. CPU utilization for high-speed normal traffic

Figure 11. Packet drop percentage for UDP malicious

traffic

Figure 12. CPU utilization for malicious UDP traffic

Figure 13. Packet drop percentage for malicious UDP and

ICMP traffic

Figure 14. CPU utilization for malicious UDP and ICMP

traffic

Figure 15. Packet drop percentage for high-speed malicious

traffic

Figure 16. CPU utilization for high-speed malicious traffic

Performance Analysis and Comparison of Snort on various platforms 31

 Packet drop percentage is linearly dependent on the traffic

rate of incoming packets for all the three Servers. It is found

that for Windows and Ubuntu Server, the drop increases after

the speed of 20000 packets per second. Also, with the increase

in the amount of malicious traffic, both the packet drop rate

and CPU utilization increases.

 In cases 2, 3 and 4, Snort efficiency decreases with increase

in speed of traffic because as traffic rate increases, the load on

Snort detection engine increases thereby resulting in dropping

of some packets. However, the decrease in efficiency is low.

But for Virtual Windows server the efficiency is almost half

due to lack of resource availability making it least favorable

platform for IDS deployment.

C. Test 3

The aim of this test is to find the effect of amount of CPU

allocated to Snort on its performance, for Ubuntu 16.04 Server.

All the previous studies related to the performance of Snort

have not considered the effect of change in the amount of CPU

allocation to Snort process, so this test provides an optimized

way of running Snort to get improved performance.

The default processor time allocated to the Snort process by

Ubuntu server is changed by changing the priority of Snort

process. The nice value of Snort process on Ubuntu 16.04

Server is changed to -20 (highest priority as kernel-based

processes) which schedules more CPU time to it as compared

to the default CPU allotment. Malicious traffic at 5000, 10000,

15000 and 20000 packets per second (equal number of TCP,

UDP and ICMP packets) are send to Snort for both the cases

and results are recorded in table 4. It is found that when more

CPU was allotted to Snort process, the packet drop percentage

decreased as shown in Figure 17.

As Snort is a single threaded application, so on a dedicated

standalone host, it gives better performance when it is run with

more CPU resource at its disposal rather than in default CPU

allocation.

Packets

received per

second

Packet Drop (%)

with more CPU

allocation

Packet Drop (%)

with default

CPU allocation

5000 0 0.135

10000 0.095101159 0.141

15000 0.290918429 0.363

20000 0.887286586 1.358

Table 4. Effect of more CPU allocation on performance of

Snort

Figure 17. Packet drop percentage for Snort with different

CPU allocations

V. Conclusion

This study focusses on determining the performance of Snort

v2.9.11 on Windows 2016 Server, Ubuntu 16.04 Server and

Virtual Windows 2016 Server. A series of tests were

conducted and it was found that with the increase in the size of

packet, the number of dropped packets increase on Ubuntu

16.04 Server, Windows Server 2016 and Virtual Windows

Server. Similar results were obtained for high-speed traffic

which also showed an increased tendency to drop packets with

increase in traffic speed. The work under study also determined

that Snort’s performance on Virtual Windows 2016 Server,

under high content of incoming malicious traffic, doesn’t meet

the expectations as demanded by the security administrators.

Amongst the three, Snort performs best on Ubuntu 16.04

Server.

Also, the packet drop percentage and CPU utilization

increases with the increase in the amount of malicious packets

in the incoming traffic. Further, by allotting more CPU time to

Snort process on Ubuntu Server, it was found that with more

CPU, the packet drop percentage was reduced. Results show

many limitations of Snort in handling large packet size of 3072

bytes or more and high-speed traffic of 25000 pps or more.

The results establish the incapacity of Snort to cope up with

large packet sizes and high-speed traffic and its tendency to

drop packets.

References

[1] P. Innella, "An Introduction to IDS," 5 dec 2011.

[Online]. Available:

https://www.symantec.com/connect/articles/introducti

on-ids. [Accessed Dec 2017].

[2] S. Chakrabarti, M. Chakraborty and I. Mukhopadhyay,

"Study of Snort-based IDS," in Proceedings of the

International Conference and Workshop on Emerging

Trends in Technology, ACM, 2010.

[3] M. Roesch, "Snort-Lightweight Intrusion detection for

Networks," in 13th Systems Administration

Conference (LISA), Seattle, Washington, USA,, 1999.

[4] M. Roesch, "SNORT 3 User manual," SourceFire.Inc,

2017. [Online]. Available:

https://Snort-org-site.s3.amazonaws.com/production/r

elease_files/files/000/005/901/original/Snort_manual.p

df?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-A

mz-Credential=AKIAIXACIED2SPMSC7GA%2F20

180115%2Fus-east-1%2Fs3%2Faws4_request&X-A

mz-Date=20180115T055124Z&X-Am. [Accessed

Nov 2017].

[5] S. Hafeez, "Deep Packet Inspection using Snort,"

2016.

[6] K.Salah and A.Kahtani, "Performance evaluation

comparison of Snort NIDS under Linux and Windows

Server," Journal of Network and Computer

Applications, vol. 33, no. 1, pp. 6-15, January 2010.

[7] K. Salah, M.-A.-R. Al-Khiaty, R. Ahmed and A.

Mahdi, "Performance Evaluation of Snort under

Windows7 and Windows Server 2008," Journal of

A. Gupta and L.S.

Sharma

32

Universal Computer Science, vol. 17, no. 11, pp.

1605-1622, 2011.

[8] S. Sen, "Performance Characterization & Improvement

of Snort as an IDS," Bell Labs, 2006.

[9] I. Karim, Q.-T. Vien, T. A. Le and G. Mapp, "A

Comparative Experimental Design and Performance

Analysis of Snort Based Intrusion Detection Systems

Detection System in Practical Computer Networks,"

Computers, vol. 6, no. 1, 7 feb 2017.

[10] W. Bul’ajoul, A. james and m. pannu, "Improving

Network Intrusion Detection System Performance

through Quality of Service Configuration and Parallel

Technology," Journal of Computer and System

Sciences, ACM, vol. 81, no. 6, pp. 981-999, september

2015.

[11] W. Bul’ajoul, A. James and M. Pannu, "Network

intrusion detection systems in high-speed traffic in

computer networks," in IEEE 10th International

Conference on e-Business Engineering, 2013.

[12] M. Saber, M. G. Belkasmi, S. Chadli, M. Emharraf and

I. E. Farissi, "Implementation and Performance

Evaluation of Intrusion Detection Systems under

high-speed networks," in Proceedings of the 2nd

international Conference on Big Data, Cloud and

Applications, 2017.

[13] M. Akhlaq, F. Alserhani, I. Awan, J. meller, A. J.

Cullen and A. Al-Dhelaan, "Implementation and

Evaluation of Network Intrusion Detection Systems,"

in Network Performance Engineering, vol. 5233,

Springer, Berlin, Heidelberg, 2011, pp. 988-1016.

[14] J. S. White, T. Fitzsimmons and J. N. Matthews,

"Quantitative analysis of intrusion detection systems:

Snort and Suricata," in Proceedings of the SPIE

Defence Security and sensing, May 2013.

[15] K. Thongkanchorn, S. Ngamsuriyaroj and V.

Visoottiviseth, "Evaluation Studies of Three Intrusion

Detection Systems under Various Attacks and Rule

Sets," in IEEE, 2013.

[16] A. Gupta and L. S. Sharma, “Mitigation of DoS and

Port Scan Attacks Using Snort,” International Journal

of Computer Sciences and Engineering, vol.7, no. 4,

April 2019

[17] D. P. Bovet and M. Cesati, “Understanding the Linux

kernel”, 3. Edition, O’Rilley Press, 2005.

[18] D. Emma, A. Pescape and G. Ventre, “Analysis and

experimentation of an open distributed platform for

synthetic traffic generation”, Suzhou, 2004, pp.

277-283.

[19] S. Avallone, S. Guadagno, D. Emma, A. Pescap and G.

Ventre, "D-ITG Distributed Internet Traffic

GeneratorS. Avallone S. Guadagno D. Emma A.

Pescap `eG. Ventre," in 1st International Conference

on Quantitative Evaluation of Systems , Enschede, The

Netherlands, 27-30 September 2004.

[20] J. Turnbull, "Improving Snort performance with

barnyard," Techtarget, 21 may 2007. [Online].

Available:

https://searchdatacenter.techtarget.com/tip/Improving

-Snort-performance-with-Barnyard.

[21] A. S. Singh and M. B. Masuku, "Applications of

Modeling and Statistical Regression Techniques in

Research," Research Journal of Mathematical and

Statistical Sciences , vol. 1, no. 6, pp. 14-20, July

2013.

Author Biographies

Dr. Lalit Sen Sharma has obtained

Master of Science in Mathematics and

MCA from Guru Nanak Dev University,

Amritsar (India). He has also obtained

Doctorate of Philosophy (PhD) from Guru

Nanak Dev University in 2008. Currently,

he is working as a Professor and Head of

Department in the department of

Computer Science and Information

Technology in University of Jammu, India.

He has been teaching to postgraduate

students of computer applications for fifteen years. He is a member of Indian

Science Congress Association, Institute of Electronics and Communication

Engineer, India and National HRD network, India.

Alka Gupta has obtained her B.E. in

Computer Science from University of

Jammu, India and has received her M.

Tech in Computer Science from Shri Mata

Vaishno Devi University Katra, J&K,

India she has been pursuing her Doctorate

of Philosophy (PhD) from Department of

Computer Science and IT, University of

Jammu since 2016. Her areas of interest

include Computer Networks, Network

Security, Data structures and mobile computing.

