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Abstract: Snort has emerged as a reliable technology for 

identifying malicious activities in networks. In this paper, a 

systematic approach has been followed to estimate the 

performance offered by Snort, an open-source network 

intrusion detection and prevention system on different 

platforms. Extensive experiments are conducted on Windows 

Server 2016, Ubuntu Server 16.04 and Virtual Windows Server 

2016 to identify the characteristics of the network traffic that 

affects Snort’s performance.  The study establishes the 

incapacity of Snort to cope up with the large packet sizes and 

high-speed traffic. It is also found that Snort has tendency to 

drop packets on all the Servers for normal as well as malicious 

traffic but shows better performs on Ubuntu Server for both 

high-speed traffic and different packet sizes. The study 

experimentally exhibits poor performance of Snort on Virtual 

Windows Server. 

 
Keywords: NIDS, NIDPS, Snort v2.X, D-ITG, Performance, 

virtual server. 

 

I. Introduction 

An intrusion detection system (IDS) monitors a system or a 

network for any malicious activity and report any intrusion 

attempt to the system administrator by generating logs. An 

Intrusion prevention system (IPS), has an added ability to 

block the intrusion attempts by either dropping the malicious 

packet, resetting the connection or blocking the source IP of 

the malicious packet etc. A system having the properties of 

both IDS and IPS are known as Intrusion detection and 

prevention system (IDPS). A good IDPS is characterized by 

its ability to identify true attacks, less number of false alerts 

and low value of dropped packets [1].  

IDS are generally classified into host-based and network 

based systems. An IDS that is installed on a single system and 

monitors incoming traffic to that system only is known as 

Host-based Intrusion detection system (HIDS) [2]. Network 

based Intrusion Detection System (NIDS) monitor all the 

traffic in their network [2] and are installed on a system that 

receives all the traffic from switch via mirroring port. 

Incoming packets are matched to its rule-set and in case of a 

match, an alert is generated and logged. NIDS have better 

performance as compared to HIDS [2]. Snort is a popular and 

most widely employed IDPS, developed by Martin Roesch. It  

 

 

was initially launched as a lightweight cross-platform packet 

sniffing device [3] and was upgraded to an IDS in 2003. It is a 

developmental open source software and has now evolved 

into a powerful intrusion detection and prevention system. Its 

latest stable version is 2.9.11 and has more than 5 million 

downloads till date. Snort releases till now were single 

threaded [4] but its new developmental release Snort v3 is 

multi-threaded with more enhanced features but is still in its 

beta stage. 

Snort 2.X is a single-threaded user-level application which 

works on TCP/IP stack. It sniffs and examines all incoming 

packets in order to identify any malicious activity. It uses 

deep packet inspection (DPI) [5] for examining packets 

wherein it first inspects the packet header only, but in cases 

where this is not sufficient it goes on to examine the packet 

payload as well. It works on Windows, Linux and FreeBSD 

operating systems. Snort, a signature-based IPS, receives 

network packets and normalizes the contents so that a set of 

rules can be applied on it to detect the presence of any 

intrusion.  

In this paper, an evaluation approach has been presented to 

measure the performance of Snort on different operating 

systems under different traffic conditions. The study 

compares NIDPS Snort v2.9.11 on Windows Server 2016, 

virtual Windows Server and Ubuntu Server 16.04 for large 

packet sizes and high-speed traffic. The effect of more CPU 

allocation is also discussed for Snort installed on Ubuntu 

16.04 Server. A real network has been set-up to evaluate and 

compare the performance based on a series of tests. The 

paper is organized into six sections where Section I contains 

the introduction, Section II contain the related work done by 

other researchers to study and evaluate the performance of 

Snort, Section III contain the experiment plan, Section IV 

contains the observations and infers the results obtained and 

finally Section V concludes the research work. 

II. Related Work 

In [6], K. Salah and A. Kahtani have evaluated and compared 

the performance of Snort on Windows 2003 sever and Linux 
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platforms in terms of throughput and packet loss. In 

Windows, they studied the effect of processor scheduling 

parameter on Snort’s performance by configuring it to 

allocate more CPU scheduling time to kernel networking 

subsystem and user processes. In Linux, different values have 

been set for parameter NAPI budget, to study its impact on 

performance of Snort. They concluded that under normal 

traffic conditions Windows Server outperformed Linux 

operating system in terms of throughput but for malicious 

traffic, Linux with a small NAPI budget value of 2 

outperformed Windows as well as other Linux configurations. 

However, the change in processor scheduling had negligible 

effect on Snort Performance for Windows.  

Salah et al. in [7] have compared Snort’s performance on 

Windows2008 Server and Windows7 to help choose the best 

configuration for Snort. They evaluated Snort’s performance 

under UP (uni-processing) and SMP (Symmetric 

multiprocessing) environments and studied the effect of 

processor affinity on it. Under UP environment, 

Windows2008 gave better throughput as compared to 

Windows7 for low traffic rates but at higher rates, both of 

them performed poorly due to lack of CPU availability. Snort 

under SMP environment showed significantly better 

throughput than UP environment and the throughput further 

increased with static affinity rather than default dynamic 

affinity. They have not studied the effect of large packet size 

and high speed traffic on the performance of Snort for 

Windows Server. 

The effect of varying packet size and rule set size on 

Snort’s performance has been studied in [8] and different 

methods have been suggested to reduce the dependency of 

Snort’s performance on increase in rule-sets. She proposed 

the use of sparse banded matrix data structure for 

implementing pattern-matching in Aho-Corasick algorithm of 

detection engine to increase both memory as well as time 

efficiency of the system. The reduction in memory 

requirements was intended to avoid cache misses and to make 

room for ever-growing number of rule-sets, which in turn 

would increase Snort’s performance. However, this resulted 

in a more complex implementation of the data structure which 

required more time for starting Snort. 

In [9], Snort has been tested for high speed and heavy 

traffic and different architectures have been proposed to deal 

with the problem of dropped packets and increase 

performance. They showed that as the traffic increases, 

packet drop rate also increases. Also, for large packets the 

packet drop rate is high. They have tested on core i4, i5 and i7 

and Windows7 and Windows Server operating systems. Their 

tests have focused on Windows OS only whereas Snort 

provides various enhanced features when deployed in Linux 

OS like barnyard which give better performance. 

Waleed Bul’ajoul et al in [10] [11] have established that 

when Snort runs in parallel in a multi-processor environment, 

its packet drop rate decreases. In their tests, they showed that 

when Snort was exposed to heavy and high-speed traffic, the 

number of packets analysed by it reduces and its packet drop 

rate increases. Similar results were obtained when large sized 

packets were run through it. However, when more than one 

Snort was run in a multi-processor environment with heavy 

and high speed traffic, the packet drop rate was drastically 

reduced. They have tested the performance only on Windows 

OS and the traffic rate at which they have performed the tests 

is very low. 

In [12] five different test scenarios have been deployed to 

study Snort performance. Testing was done with different 

number of packets, different packet-sizes, traffic rates and 

combination of above. They observed an increase in the 

number of dropped packets with increase in number of 

packets to be processed, increase in packet-sizes and traffic 

rate. The network speed was less as compared to real 

network. 

In [13], Snort has been tested in both host configuration as 

well as Virtual configurations for different hardware 

implementations and operating system by loading the systems 

with large packet-sizes and bandwidth. Snort showed lower 

detection ability and dropped packets in almost all the 

scenarios. Virtual Snort showed poor performance amongst 

all and so it was recommended not to use Snort in Virtual 

configuration. It was concluded that Snort performance gets 

degraded for high volume of traffic above 750 Mbps in all the 

network implementations. 

In [14] Snort is compared with Suricata on the basis of 

scalability and performance. They performed a total of 8600 

tests by varying the number of cores used (1 to 24 cores), the 

rule-sets used for signature comparison, the workload used to 

obtain results and the configuration of both the IDSs. The 

metrics used for comparison were packets per second (pps) 

as processed by each IDS, the amount of memory used by 

each IDS process and the CPU utilization. Results showed 

that both Snort and Suricata were scalable but Suricata 

outperformed Snort in almost all the test scenarios. Suricata 

also exhibited lower average memory usage and lower 

average CPU utilization.  

Detection accuracy of three popular open-source intrusion 

detection systems- Snort, Suricata and Bro-IDS has been 

compared and analyzed in [15]. They studied the effect of 

number of active rules, different traffic rates and eight types 

of attacks on the evaluation efficiency of the Intrusion 

Detection Systems and concluded that use of different set of 

rules (active rules) for different attack types resulted in 

increased accuracy of the IDS. Also, Bro-IDS showed better 

performance amongst other IDS systems when evaluated 

under different attack types and using a specific set of active 

rules.  

Snort’s performance is also evaluated for detecting DoS 

and Port scan attacks in network [16] Snort has been 

evaluated in a high-speed network to determine its efficiency 

in detecting network attacks. The performance of Snort on 

Ubuntu server is good as it gives 100 % detection rate with 

zero false alarms in most of the attacks except Ping of Death. 

In [6], [7], [9] and [13], snort has been tested on tested and 

compared on windows and Linux operating systems but the 

versions on which it is tested are very old.  Also with time, 

new Snort versions are available with new and modified 

rule-sets as per the current threats. This work tests the 

performance of Snort on latest Windows and Linux operating 

systems along with the latest Snort rule-set to correctly 

identify the status of Snort in handling current traffic trends. 

Another motivation behind this work is to test Snort’s 

performance on cloud platform which is extensively used 

these days. None of the previous works have tested Snort’s 

performance on cloud platform. 
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In [9], [10] and [13], the effect of heavy traffic and large 

sized packets on performance of Snort has been tested but a 

higher traffic rate and large packet size are considered in this 

paper. 

Our work is different from all the previous work for 

various reasons: (1) Snort’s performance of version v 2.9.11 

has not been analyzed and compared on Ubuntu 16.04 Server 

and Virtual Windows 2016 Server. (2) The traffic rate at 

which experiments are carried out is sufficiently high (3) 

Studying the impact of different proportions of malicious 

traffic on Snort’s performance has not been considered before. 

(4) The effect of more CPU allotment on Snort’s performance 

in Ubuntu 16.04 Server has not been estimated.  
 

III. Experiment Plan 

We aim to evaluate Snort in network intrusion detection 

mode by analyzing its performance under high-speed and 

heavy load conditions for different operating systems. The 

effect of more CPU allocation on the performance of Snort on 

Ubuntu Server [17] has also been studied. Snort v2.9.11 is 

installed in its default configuration with 9453 rules provided 

by Snort Vulnerability Research Team (VRT). 

D-ITG used to generate both normal and malicious traffic. 

D-ITG (Distributed Internet Traffic Generator) generates 

IPv4 packets [18] at application, transport and network layer. 

It can generate a packet rate of 75000 packets per second 

where size of each packet is 1024 bytes [19].  
 

The study is divided into three tests: 

1. Test 1: Snort is tested on Ubuntu 16.04 Server, Windows 

Server 2016 and Virtual Windows2016 Server for large 

sized packets of 512, 1024, 1536, 2048, 2560 and 3072 

bytes for four combinations of normal and malicious traffic.  

2. Test 2: Snort is tested on Ubuntu 16.04 Server, Windows 

Server 2016 and Virtual Windows2016 Server for high 

speed traffic of 5000, 10000, 15000, 20000, 25000 and 

30000 packets per second. The four traffic cases described 

above have also been considered here. 

3. Test 3: The effect of allocation of more CPU time is 

studied on the performance of Snort on Ubuntu 16.04 

Server. 
 

Test 1and 2 are further divided into four cases to study the 

effect of four different proportions of normal and malicious 

traffic. Every malicious packet triggers an alert from Snort 

whereas normal packets do not generate any alert. The four 

traffic combinations are: 

 Normal traffic  

 TCP and ICMP packets are normal but all UDP packets 

are malicious  

 UDP and ICMP packets are malicious but TCP packets 

are normal 

 All TCP, UDP, ICMP packets are malicious.  
 

Three Performance metrics have been used to calculate and 

compare Snort performance in different test scenarios. These 

metrics are based on the parameters that impact SNORT 

performance. The evaluation parameters are: 
 

 Packet drop (%): It is computed as  

 
 

Packet drop (%) = Total packets dropped by Snort   * 100. 

   Total packets received by Snort 
 

 

 Snort efficiency (%): It is the percentage of packets 

analysed by Snort and is calculated as: 
 

Snort efficiency = Total packets analysed by Snort   * 100. 

 Total packets received by Snort 
 

 CPU utilization (%) 

 

3.1. EXPERIMENTAL SET-UP 
 

Three separate experimental test benches have been setup to 

test the performance of Snort v2.9.11 on different platforms 

in similar network conditions. The system description and 

specifications are enlisted in the table 1 below. 

D-ITG Traffic 

Generator (TCP)

D-ITG Traffic 

Generator (UDP)
D-ITG Traffic 

Generator (ICMP)

SNORT v2.9.11

 {Host OS}

16-port Switch

 

Figure 1. Experimental set-up 
 

 

Machine  Description Specifications  

TCP 

traffic 

generator 

Dell Intel(R) core(TM) 

i3-3110M CPU @ 

2.40GHz, 8 GB RAM 

Ubuntu 16.04 

desktop with D-ITG 

traffic generator 

UDP 

traffic 

generator 

Dell Intel(R) core(TM) 

i3-3110M CPU @ 

2.40GHz, 8 GB RAM 

Ubuntu 16.04 

desktop with D-ITG 

traffic generator 

ICMP 

traffic 

generator 

Dell Intel(R) core(TM) 

i3-3110M CPU @ 

2.40GHz, 8 GB RAM 

Ubuntu 16.04 

desktop with D-ITG 

traffic generator 

Snort 

v2.9.11 

Hp Intel(R) core(TM) 

i5-3210M CPU @ 

2.40GHz, 8 GB RAM 

Windows Server 

2016 

 

Snort 

v2.9.11 

Hp Intel(R) core(TM) 

i5-3210M CPU @ 

2.40GHz, 8 GB RAM 

Ubuntu 16.04 

Server 

Table 1.  System Specifications 

 

Setup 1: The test bench consists of four computers 

forming a LAN via a D-link web smart DGS-1210-16 16-port 

switch as shown in Figure 1. Three systems have been used as 

traffic generators and have D-ITG installed on them, where 

each machine is generating packets pertaining to one protocol. 

Machine 1 generates TCP packets, machine 2 generates UDP 

packets and machine 3 generates ICMP traffic. Snort is 

installed on the fourth machine with Ubuntu 16.04 Server as 

Host OS. 

Setup 2: The test bench is similar to the test bench in Setup 

1 except that the Host OS is Windows Server 2016 on which 

Snort is installed. 
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Setup 3: The Virtual Windows Server is set-up on a 

commercialized cloud (Azure) with three traffic generators 

and a switch. Snort is installed on Virtual Windows 2016 

Server. All the machines are Standard_D2s_v3 with 2 VCPU 

and 8GB RAM.  

IV. Results And Discussions 
 

A. Test 1 

For this experiment, TCP, UDP and ICMP packets of 

different sizes are sent at a rate of 15000 packets per second 

to all the three Servers. Total 1800000 packets of different 

sizes are send and number of packets analysed and dropped 

by Snort are recorded. Four test cases are considered here, by 

sending different amounts of malicious traffic to all the three 

Servers under evaluation.  

1) Case 1 

In this case only normal traffic was used for evaluation.  The 

results of sending normal traffic is tabulated in table 2(a) for 

the three Servers and is graphically represented in Figures 2 

and 3. Figures 2 shows that as the size of packet increases 

from 512 to 3072 bytes, the packet drop percentage increases. 

Also, the values of packet drop percentage is less than 1% for 

all the Servers but amongst them, Ubuntu Server shows 

better performance by dropping less number of packets. The 

CPU utilization increases with the increase in packet size and 

is more for Ubuntu 16.04 Server (Figure 3). Snort efficiency 

is similar for all the three operating systems in this case. 

 

 

(a)     Normal traffic 

  Ubuntu Server Virtual Windows Server Windows Server 

Packet 

size 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%)  

CPU 

Utilization 

(%) 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

512 0.0065 99.99 22.07 0 100 20 0 100 22 

1024 0.0021 100 25.935 0.009 99.99 25.5 0 100 27 

1536 0.0038 100 39.93 0.016 99.98 41.36 0.016 99.98 44 

2048 0.004 100 58.88 0.019 99.98 43 0.015 99.99 46 

2560 0.004 100 68.68 0.021 99.98 47 0.019 99.98 48 

3072 0.0043 100 76 0.024 99.98 54 0.133 99.87 55 

(b)      UDP malicious traffic 

  Ubuntu Server Virtual Windows Server Windows Server 

Packet 

size 

Packet 

Drop  

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

512 0.405 99.6 30.28 45.95 54.05 64 0.092 99.91 28 

1024 1.165 98.84 38.46 46.065 53.94 69 2.563 97.44 38 

1536 1.122 98.88 52.14 47.212 52.79 69 2.867 97.13 56 

2048 1.542 98.46 67.08 47.439 52.56 69 3.881 96.12 57 

2560 1.38 98.62 76.74 47.2 52.8 76 5.038 94.96 58 

3072 2.004 98 84.85 49.59 50.41 76 6.886 93.11 65 

(c)     UDP and ICMP malicious traffic 

  Ubuntu Server Virtual Windows Server Windows Server 

Packet 

size 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

512 2.7727 97.23 34.76 48.277 51.72 67 2.629 97.37 35 

1024 2.1596 97.84 43.02 48.4 51.6 75 5.779 94.22 52 

1536 2.7505 97.25 60.4 48.66 51.34 75 9.963 90.04 67 

2048 5.64 94.36 71.94 48.7 51.3 76 11.365 88.64 69 

2560 11.24 88.76 81.56 48.46 51.54 76 19.6 80.4 70 

3072 12.02 87.98 90.95 50.42 49.58 79 26.9 73.1 73 

(d)      All malicious traffic 

  Ubuntu  Server Virtual Windows Server Windows Server 

Packet 

size 

Packet 

Drop 

 (%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

Drop   

(%) 

Snort 

efficiency 

(%) 

CPU 

Utilization 

(%) 

512 3.7406 96.26 37.4 48.756 51.24 67.8 3.319 96.68 39 

1024 2.9298 97.07 44.85 48.87 51.13 76 3.974 96.03 77 

1536 4.6754 95.32 57.12 49.142 50.86 76 6.616 93.38 81 

2048 4.5604 95.44 78.01 49.156 50.84 78 16.8 83.2 86 

2560 11.077 88.92 91.52 49.17 50.83 79 17.672 82.33 91 

3072 20.671 79.33 93.25 53.566 46.43 83 18.864 81.14 96 
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Table 2.  Comparison of three Servers for different packet sizes and different proportions of malicious traffic

2) Case 2 

For this case, UDP traffic from UDP traffic generator was 

malicious and both TCP and ICMP traffic was normal.  The 

results are tabulated in table 2(b) and represented in Figures 4 

and 5. Figure 4 shows that the packet drop percentage 

increases a bit from size 512 to 1024 and is similar for sizes 

1024, 1536, 2048 and 2560 bytes and then shows a slight 

increase for packet size of 3072 bytes for all the three Servers. 

Ubuntu Server shows better performance by dropping less 

packets as compared to Windows Server and Virtual 

Windows Server. Virtual Windows Server drops almost 48% 

of incoming traffic and so almost half of the incoming packets 

go unchecked. CPU utilization increases with the increase in 

packet size and is maximum for Virtual Windows Server. 

Snort efficiency decreases with increase in packet size and is 

lowest for Virtual Windows Server. 

 

3) Case 3 

In this case, both UDP and ICMP packets are malicious and 

TCP traffic was normal. The results are represented in 

Figures 6 and 7 and are tabulated in table 2(c). Initially, the 

size of packet has very little effect on packet drop percentage 

 (512 to 1536bytes) for the three Servers but when size 

becomes large, the drop percentage follows a ramp for 

Ubuntu and Windows Server. Virtual Windows Server 

performs poorly and drops almost half of the packets for all 

packet sizes, however, Ubuntu Server shows better 

performance as compared to Windows Server (Figure 6). 

Snort efficiency decreases with increase in packet size and is 

lowest for Virtual Windows Server. The CPU utilization 

increases with the increase in packet size and is maximum for 

Virtual Windows Server for all packet sizes except 3072 

bytes. 
 

 
Figure 2. Packet drop percentage for normal traffic 

 

 

Figure 3. CPU utilization for normal traffic 
 

 
Figure 4. Packet drop percentage for malicious UDP traffic 

 

Figure 5. CPU utilization for malicious UDP traffic 
 

 
Figure 6. Packet drop percentage for malicious UDP and 

ICMP traffic 

Figure 7. CPU utilization for malicious UDP and ICMP 

traffic 

4) Case 4 

The traffic consists of malicious packets of TCP, UDP and 

ICMP as shown in table 2(d).  The results show that small 

sized packet have very little effect on packet drop percentage 

for the three Servers but when packet size becomes large 

(2560 and 3072 bytes), the drop percentage follows a linear 

increase for Windows and Ubuntu Servers. Ubuntu Server 

shows better performance and Virtual Windows Servers 
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performs poorly (Figure 8). CPU utilization increases with 

increase in packet size and is maximum for Windows Server 

(Figure 9). Snort efficiency decreases with increase in packet 

size and is lowest for Virtual Windows Server. 

 

 
Figure 8. Packet drop percentage for all malicious traffic 

 

 
Figure 9. CPU utilization for all malicious traffic 

 

The performance of Snort is affected by the size of 

incoming packets for all the three Servers. The packet drop 

increases slightly as we go from 512 to 1024 bytes packets 

because as the payload size increases, the amount of time 

taken by Snort to process the contents for matching it against 

the rule set also increases. As we go from 1024 bytes to 1536 

bytes, the packets drop percentage shows a raise. The reason 

for this behavior is that a packet of size 1536 bytes undergoes 

fragmentation before reaching Snort as its size is greater than 

one MTU (Maximum Transfer Unit). Snort takes more time 

in processing fragmented packets and so packet drop 

increases. Packets of size 1536 and 2048 bytes have similar 

values of packet drop but an increase is observed for 2560 

bytes as for this size the amount of payload to be matched is 

high as compared to other two sizes. With the increase the 

packet size from 2560 to 3072 bytes, the packet drop 

percentage increases abruptly because for this size each 

packet has to be fragmented into three MTUs which need 

more processing from Snort. 

On comparing Snort’s performance on Windows and 

Ubuntu Server, it is found that Snort shows a low 

performance on Windows Server for malicious traffic. This is 

because of the sub-process of writing alerts on the disk. In 

Ubuntu, logs are written in unified2 binary format which are 

then read by barnyard2 [20] whereas no such option is 

available in Windows. Writing logs in unified2 binary format 

is the fastest mode of outputting alert data [21], which takes 

less time to write logs thereby increasing Snort processing 

efficiency and reducing packet drop rate. 

 

Also, the performance of Snort in cloud environment is 

very poor as almost 50% of the packets are dropped. The 

prime reason behind the poor performance of Snort could be 

convincingly attributed to the fact that all Host Operating 

Systems in Cloud are Virtual in nature (i.e. Virtual Machines) 

and hence are resource constrained. Given this reason it could 

be extrapolated that the performance of Snort in cloud 

environment could be improved by making it run on a Virtual 

machine with generous amount of computing and memory 

resources 

 A high value of CPU utilization on a standalone 

host is desirable as it indicates better resource utilization but 

while working on a shared host, a higher value of CPU 

utilization means more waiting time for other processes, 

which is a problem. It is deduced from table 2 that Snort on 

Virtual Windows Server uses up most of the CPU processing 

time which is an undesirable feature as it increases delay for 

other processes that require processing on a shared host.  

Also, with increase in the content of malicious packets, 

both the packet drop percentage and the CPU utilization 

increases.  As malicious packets require more content 

matching time and for each packet an alert is to be written on 

the disk, so Snort takes more time in processing them thereby 

increasing CPU utilization and Packet drop percentage for all 

the three Servers under test.  

B. Test2 

Equal amounts of TCP, UDP and ICMP packets are send to 

Ubuntu 16.04 Server, Windows2016 Server and Virtual 

Windows Server 2016 at speeds of 5000, 10000, 15000, 

20000, 25000 and 30000 packets per second for 120 seconds. 

All the packets are of size 256 bytes. Performance of Snort 

has been studied and compared for normal traffic and 

different proportions of malicious traffic.  
 

1) Case 1 

For normal traffic, all the Servers performed good with no 

packet loss for all the different speeds as shown in table 3 (a). 

The value of CPU utilization increased with the increase in 

speed of sending packets for the three Servers. For small 

traffic rate, Windows Server has high CPU utilization but for 

high traffic rates, Virtual Windows Server has higher value of 

CPU utilization (Figure 10). 

 

2) Case 2 

For UDP malicious traffic as shown in table 3(b), Virtual 

Windows Server dropped almost half of the packets and 

performed poorly in all the cases as depicted by Figures 12. 

Ubuntu performed better by dropping less packets.  CPU 

utilization increased with the increase in speed of sending 

packets for both Windows and Ubuntu Servers (Figure 11), 

but for Virtual Windows Server it showed very less variation 

and was maximum amongst the three Servers. 

 

3) Case3 

As shown in table 3(c) when malicious ICMP and UDP traffic 

was send, Windows showed poor performance than Ubuntu 

by dropping more packets (Figure 13). Virtual Windows 

performed poorly again by dropping maximum number of 
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packets. CPU utilization is highest for Virtual Windows 

Server and minimum for Ubuntu Server (Figure 14). 

 

 

(a)     Normal traffic 

  Ubuntu Server Windows Server Virtual Windows Server 

Packets 

received 

per second 

Packet  

Drop  

(%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

 Drop  

(%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

 Drop  

(%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

5000 0 100 12.9 0.036 99.96 27 0 100 16 

10000 0 100 16.62 0.055 99.95 28 0 100 20 

15000 0 100 21.26 0.052 99.95 28 0 100 30 

20000 0 100 26.5 0.025 99.98 31 0 100 50 

25000 0 100 39.4 0.067 99.93 32 0 100 53 

30000 0 100 44.96 0.069 99.93 37 0.0157 100 59 

(b)     Malicious UDP traffic 

  Ubuntu Server Windows Server Virtual Windows Server 

 Packets 

received 

per second 

Packet 

 Drop  

(%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

 Drop 

 (%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

 Drop 

 (%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

5000 0 100 21.33 0.235 99.77 28 39.72 60.28 69.5 

10000 0.0987 99.9 25.8 0.9282 99.07 32 45.44 54.56 69.47 

15000 0.356 99.64 39.9 0.9519 99.05 33 47.95 52.05 70.88 

20000 0.655 99.35 48.06 0.969 99.03 35 48.23 51.77 72.36 

25000 1.06 98.94 65.2 1.439 98.56 40 48.786 51.21 75.2 

30000 1.876 98.12 74.8 1.54 98.46 42 48.892 51.11 80 

(c)      Malicious UDP and ICMP traffic 

  Ubuntu Server Windows Server Virtual Windows Server 

Packets 

received 

per second 

Packet   

Drop  

(%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

 Drop 

 (%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

 Drop  

(%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

5000 0 100 22.33 0.367 99.63 28 46.4 53.6 70.9 

10000 0.0985 99.9 33.35 0.9491 99.05 31 47.67 52.33 72.24 

15000 0.156 99.84 52.47 1.207 98.79 34 49.02 50.98 74.32 

20000 1.02 98.98 71.35 5.078 94.92 37 49.14 50.86 79.65 

25000 1.375 98.63 80.63 8.927 91.07 43 49.26 50.74 80.57 

30000 3.52 96.48 93.94 8.6 91.4 52 49.4 50.6 81.21 

(d)     All Malicious traffic 

  Ubuntu Server Windows Server Virtual Windows Server 

Packets 

received 

per second 

Packet  

Drop 

 (%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet  

Drop  

(%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

Packet 

 Drop 

 (%) 

Snort 

Efficiency 

(%) 

CPU 

Utilization 

(%) 

5000 0.13468 99.87 25 0.0526 99.95 36 46.383 53.62 69 

10000 0.14088 99.86 35.11 1.053 98.95 37 48.108 51.89 74 

15000 0.36327 99.64 56 0.949 99.05 40 48.886 51.11 74 

20000 1.35879 98.64 79.15 1.58 98.42 42 49.257 50.74 83 

25000 4.695 95.31 93.2 7.018 92.98 45 49.35 50.65 85.51 

30000 9.9978 90 96 19.403 80.6 55 49.49 50.51 85.21 

Table 3. Comparison of the three Servers for high-speed traffic and different proportions of malicious data
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4) Case 4 

For malicious traffic as shown in table 3(d), Windows Server 

continued to perform poorly. However, the dropped packets 

increased abruptly for Ubuntu Server and Windows Server at 

the speed of 30000 packets per second as in Figure 15. CPU 

utilization is high for Virtual Windows Server initially but for 

higher traffic rates of 25000 and 30000 packets per second, 

Ubuntu Server takes over (Figure 16). 
 

 
Figure 10. CPU utilization for high-speed normal traffic 

 

Figure 11. Packet drop percentage for UDP malicious 

traffic

Figure 12. CPU utilization for malicious UDP traffic 

 

 
Figure 13.  Packet drop percentage for malicious UDP and 

ICMP traffic 
 

 
Figure 14. CPU utilization for malicious UDP and ICMP 

traffic 

 
Figure 15. Packet drop percentage for high-speed malicious 

traffic 

 
Figure 16. CPU utilization for high-speed malicious traffic 

 



Performance Analysis and Comparison of Snort on various platforms 31 

      Packet drop percentage is linearly dependent on the traffic 

rate of incoming packets for all the three Servers. It is found 

that for Windows and Ubuntu Server, the drop increases after 

the speed of 20000 packets per second. Also, with the increase 

in the amount of malicious traffic, both the packet drop rate 

and CPU utilization increases. 

     In cases 2, 3 and 4, Snort efficiency decreases with increase 

in speed of traffic because as traffic rate increases, the load on 

Snort detection engine increases thereby resulting in dropping 

of some packets. However, the decrease in efficiency is low. 

But for Virtual Windows server the efficiency is almost half 

due to lack of resource availability making it least favorable 

platform for IDS deployment.  
 

C. Test 3 

The aim of this test is to find the effect of amount of CPU 

allocated to Snort on its performance, for Ubuntu 16.04 Server. 

All the previous studies related to the performance of Snort 

have not considered the effect of change in the amount of CPU 

allocation to Snort process, so this test provides an optimized 

way of running Snort to get improved performance. 

The default processor time allocated to the Snort process by 

Ubuntu server is changed by changing the priority of Snort 

process. The nice value of Snort process on Ubuntu 16.04 

Server is changed to -20 (highest priority as kernel-based 

processes) which schedules more CPU time to it as compared 

to the default CPU allotment. Malicious traffic at 5000, 10000, 

15000 and 20000 packets per second (equal number of TCP, 

UDP and ICMP packets) are send to Snort for both the cases 

and results are recorded in table 4. It is found that when more 

CPU was allotted to Snort process, the packet drop percentage 

decreased as shown in Figure 17.  

As Snort is a single threaded application, so on a dedicated 

standalone host, it gives better performance when it is run with 

more CPU resource at its disposal rather than in default CPU 

allocation. 

 

Packets 

received per 

second  

Packet Drop (%) 

with more CPU 

allocation 

Packet Drop (%)  

with default 

CPU allocation 

5000 0 0.135 

10000 0.095101159 0.141 

15000 0.290918429 0.363 

20000 0.887286586 1.358 

Table 4. Effect of more CPU allocation on performance of 

Snort 
 

 
 

Figure 17. Packet drop percentage for Snort with different 

CPU allocations 

V. Conclusion 

This study focusses on determining the performance of Snort 

v2.9.11 on Windows 2016 Server, Ubuntu 16.04 Server and 

Virtual Windows 2016 Server. A series of tests were 

conducted and it was found that with the increase in the size of 

packet, the number of dropped packets increase on Ubuntu 

16.04 Server, Windows Server 2016 and Virtual Windows 

Server. Similar results were obtained for high-speed traffic 

which also showed an increased tendency to drop packets with 

increase in traffic speed. The work under study also determined 

that Snort’s performance on Virtual Windows 2016 Server, 

under high content of incoming malicious traffic, doesn’t meet 

the expectations as demanded by the security administrators. 

Amongst the three, Snort performs best on Ubuntu 16.04 

Server.  

Also, the packet drop percentage and CPU utilization 

increases with the increase in the amount of malicious packets 

in the incoming traffic. Further, by allotting more CPU time to 

Snort process on Ubuntu Server, it was found that with more 

CPU, the packet drop percentage was reduced. Results show 

many limitations of Snort in handling large packet size of 3072 

bytes or more and high-speed traffic of 25000 pps or more. 

The results establish the incapacity of Snort to cope up with 

large packet sizes and high-speed traffic and its tendency to 

drop packets. 
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