
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 13 (2021) pp. 062-071

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 5 Jan 2021; Accepted: 12 May 2021; Published: 13 July 2021

Prioritizing and Minimizing the Test Cases using

the Dragonfly Algorithms

Anu Bajaj1, Ajith Abraham2

1 Machine Intelligence Research Labs,

Auburn, Washington, USA
1er.anubajaj@email.com
2 ajith.abraham@ieee.org

Abstract: Regression testing is a necessary but costly process.

It involves re-running all of the test cases each time the software

is updated. The resources and time needed for retesting can be

decreased by minimizing redundancy and prioritizing the test

cases. Furthermore, optimization procedures enhance the

efficacy of test case prioritization and minimization. In this

research, we have proposed a discrete and combinatorial

dragonfly algorithm. In addition, its hybrid version is created

with a particle swarm optimization algorithm. The suggested

approaches are compared to the random search, genetic

algorithm, particle swarm optimization and the bat algorithm.

The assessment is done on four subject programs of differing

sizes. The simulation results show that the proposed methods are

more efficient and effective than the compared algorithms.

Furthermore, the hybrid algorithm has a compact distribution

as seen by boxplots and interval plots of the average percentage

of fault detection and the test minimization percentage.

Keywords: search-based software testing, combinatorial

optimization, dragonfly algorithm, particle swarm optimization, test
case prioritization, discrete optimization, nature-inspired algorithms,

test case minimization, regression testing

I. Introduction

To preserve the software's quality, the rapid development

of software necessitates preliminary testing of updates.

Therefore, the software is put through regression testing. It

ensures that the modifications aren't prone to errors and the

upgrades are compatible with the previous one [1]. However,

exhaustive retesting is impractical when the size of the test

suite grows exponentially [2]. According to [9], on average, a

Google developer tests the software twenty times a day, which

is a cumbersome task for extensive software. As a result, it is

separated into three ways to address the time and cost

constraints: test case minimization (TCM), test case

prioritization (TCP), and test case selection (TCS) [1].

TCP offers certain benefits over TCS and TCM. Because

it simply ranks the test cases according to their importance for

achieving predetermined goals [3]. In contrast, TCS and TCM

remove the test cases to reduce the effort and time of retesting.

TCS picks only those test cases affected by updated area, and

TCM clears the redundant test cases. In other words, they may

eliminate several crucial test cases [1].

Sorting a large number of test cases, on the other hand, is

time-consuming, making it an NP-hard [3]. Optimization

methods are effective in resolving these sorts of issues.

Nature-inspired approaches are such methods that imitate

natural occurrences to address complicated real-world

problems [4]. They are becoming more popular as a result of

their evident and easy implementation [2]. According to the

source of occurrence, these are grouped into physics/

chemistry-inspired, social phenomena-inspired and biology-

inspired methods [4].

The majority of regression testing is done using biology-

inspired techniques [5]. However, a small number of

researchers have used other nature-inspired approaches [6-7].

In contrast, recently developed algorithms like the dragonfly

algorithm are yet to be investigated [2]. Therefore, it motivates

us to apply the dragonfly algorithms for TCP and TCM in this

research. The following are the work's key contributions:

• To suggest a discrete dragonfly algorithm (DA) for

TCP succeeded by redundancy removal, i.e., TCM.

• To enhance the DA's effectiveness by hybridizing it

with particle swarm optimization algorithm (PSO),

namely, DAPSO.

• To evaluate the algorithms' performance on various

subject programs of different sizes using the

performance measures: average percentage of fault

detection (APFD) and test minimization percentage

(TMP).

• To analyze the proposed approaches w.r.t. the PSO,

genetic algorithm (GA), BAT algorithm and random

search (RS).

Initially, the DA is employed to solve a continuous problem

[8]. We discretized DA using a fix-up method to patch up the

infeasible values to the feasible ones [9]. It's also been

hybridized with PSO, and this upgraded version, DAPSO,

outperformed the previous one. Furthermore, the TCM

approach is used to eliminate unnecessary test cases [6]. The

findings reveal that the suggested methods are successful and

efficient in tackling the TCP and TCM problems.

Section 2 discusses the current state of regression testing

that utilized nature-inspired methods. The DA is described in

Section 3, and the proposed approaches are explained in

Section 4. Sections 5 and 6 detail the experimental setup and

findings, respectively. Section 7 contains the summary of the

research and the future work.

Prioritizing and Minimizing the Test Cases using the Dragonfly Algorithms

63

II. Literature Review

The nature-inspired approaches applied in regression

testing and the applications of dragonfly algorithms are

covered in this section.

Li et al. [10] investigated the search-based approaches'

performance and the classic methods for TCP. It was observed

that the search-based techniques are less effective than the

greedy approach. NSGA-II has been used to reduce the test

case size and prioritize the test cases based on event coverage

[11]. The influence of operators and parameter settings on the

TCP was investigated using GA [12]. It was discovered that

the method is affected differently by various selection

operators and parameter values. As a result, the fitness

function design and parameter selections have a considerable

impact on algorithm performance [3].

ACO algorithm was used to reduce the test suite. The

experiment performed on Java programs revealed that the

ACO performed better than the classic heuristics [13].

Marchetto et al. [14] applied a multi-objective evolutionary

algorithm considering the requirement coverage, code

coverage and execution cost as the objective functions. The

experiments indicated that the proposed method was adequate

but not efficient than the baseline approaches for reducing the

test suite size.

Recently, researchers have begun to apply relatively new

nature-inspired methods, e.g., using the BAT method for TCP

yielded encouraging results [15]. Khatibsyarbini et al. [16]

suggested a flower pollination algorithm for TCP. The

similarity distance model was the fitness function, and the

experiment showed that the obtained results were not the same

as predicted. Sugave et al. [23] used DA for test suite

minimization, and the results were better than systolic GA,

greedy and bat algorithms. It prompted us to try out DA for

solving TCP.

Mirjalili developed the DA algorithm [8]. It is applied to

solve various optimization problems, like feature selection

[17], numerical optimization problems [18] and wind power

forecasting [19]. Sayed et al. [18] developed a chaotic DA by

employing ten chaotic maps for the main parameters of the

DA to enhance the convergence speed and efficiency of the

algorithm. The experimental results showed that the chaotic

gauss map outperformed the other maps. DA was iteratively

hybridized with PSO to enhance the exploitation capability of

DA. The results were better than the DA, PSO and bat

algorithms. Li et al. [19] used the improved DA for wind

power forecasting. The algorithm was enhanced with the

adaptive learning factor and differential evolution strategy. It

was applied to support vector machine for optimizing their

parameters for better prediction accuracy.

The positive results of DA applications in various

disciplines encouraged us to investigate the algorithm's

potential for regression testing. However, to the best of our

knowledge, we are the first to suggest DA for TCP. For

mapping the method to the discrete combinatorial problem,

we employed a fix-up technique [9]. In addition, we have also

applied the hybrid of the DA and PSO [17] to improve its

performance. The results validated the proposed algorithms'

effectiveness. The subsequent section covers the

fundamentals of the DA.

III. Dragonfly Algorithm

The dragonfly algorithm is a swarm intelligence based

optimization developed by Mirjalili [8]. It is motivated by the

static and dynamic swarming of dragonflies. It models the

social interaction behavior of dragonflies in navigating,

seeking meals, and avoiding opponents to design two crucial

stages of optimization: exploration and exploitation [16].

During the exploitation phase, swarms of dragonflies travel in

one direction covering long ranges, distracting adversaries

[17]. However, dragonflies form tiny groups during the

exploration phase and fly back and forth over a short region,

searching for food and attracting passing preys [18]. Its

working is as follows:

A. Initialization

The initial population is produced at random.

B. Fitness evaluation

The fitness values of the population are evaluated in this

step. The most widely used fitness function, APFD, is

employed in the method (see section 5.2).

C. Update food and enemy sources

The attraction towards food source and distraction from the

enemy source are calculated as:

 𝐹𝑖 = 𝑥+ − 𝑥 (1)

 𝐸𝑖 = 𝑥− − 𝑥 (2)

here 𝑥 is the current position, 𝑥+ and 𝑥− are food and

enemy sources.

D. Update the swarming weights, separation, alignment and

cohesion

The algorithm employs swarming weights, i.e., separation

(s), alignment (a), cohesion (c), food factor (f) and enemy

factor (e) to guide the artificial dragonflies for various paths.

The separation, alignment, cohesion are given by:

 𝑆𝑖 = ∑ 𝑥 − 𝑥𝑖
𝑛
𝑖=1 (3)

 𝐴𝑖 =
∑ 𝑣𝑖

𝑛
𝑖=1

𝑛
 (4)

 𝐶𝑖 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
− 𝑥 (5)

here 𝑥𝑖 and 𝑣𝑖 is the position and velocity of 𝑖𝑡ℎ dragonfly

and 𝑛 is the number of neighboring dragonflies.

E. Population update

The neighborhood distance is calculated using Euclidian

distance among all the dragonflies and select 𝑛 best

dragonflies using eq. (6)

 𝑟𝑖𝑗 = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑑
𝑘=1 (6)

If there is at least one dragonfly in the neighborhood then

the position is updated using the vectors: step vector (∆𝑥) and

position vector (𝑥). The step vector is analogous to velocity of

PSO and is calculated as:

 ∆𝑥𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤∆𝑥𝑡 (7)

here 𝑡 is the current iteration. The position of the dragonfly

is updated using the following equation:

 𝑥𝑡+1 = 𝑥𝑡 + ∆𝑥𝑡+1 (8)

Bajaj and Abraham

64

Algorithm 1. Dragonfly Algorithm

1. Begin

2. Define the MaxPop, MaxIter

3. Randomly initialize population and step vector

4. For t = 1 : MaxIter

5. Update the fitness

6. Update the swarming weights

7. For i = 1 : MaxPop

8. Update 𝐹𝑖 , 𝐸𝑖 , 𝑆𝑖, 𝐴𝑖 and 𝐶𝑖 using (1) - (5)

9. Update neighboring radius using (6)

10. If there is at least one dragonfly near it

11. Update step and position vectors using (7) - (8)

12. Else

13. Update position using (9)

14. End if

15. Fix up the solution

16. End for

17. Store best solution

18. Eliminate the duplicate test cases

19. End for

20. End

Algorithm 2. DAPSO Algorithm

1. Begin

2. Define the MaxPop, MaxIter

3. Randomly initialize population and step vector

4. For t = 1 : MaxIter

----------------------start of DA--------------------------

5. For i = 1 : MaxPop

6. Calculate the fitness f(xi)

7. Update DApbest and DAgbest

8. End for

9. For i = 1 : MaxPop

10. Update the swarming weights

11. Update 𝐹𝑖 , 𝐸𝑖 , 𝑆𝑖, 𝐴𝑖 and 𝐶𝑖 using (1)-(5)

12. Update neighboring radius using (6)

13. If there is at least one dragonfly in the vicinity

14. Update step and position vectors using (7) - (8)

15. Else

16. Update position using (9)

17. End if

18. Fix-up the solution

19. End for

------------end of DA and start of PSO--------------

20. Initialize population with DApbest

21. Set gbest to DAgbest

22. For t = 1 : MaxIter

23. For i=1:MaxPop

24. Calculate fitness

 Update local (pbest) and global best (gbest)

25. End for

26. For i=1:MaxPop

27. Update velocity and position using (10)-(11)

28. Fix up the solution

29. End for

30. End for

------------------------end of PSO-----------------------

31. Store best solution

32. Eliminate the duplicate test cases

33. End for

34. End

MIR Labs, USA

Levy flights are introduced to increase the randomness,

exploration and exploitation when it does not found any

dragonfly in the neighboring radius. It is given as:

 𝑥𝑡+1 = 𝑥𝑡 + 𝐿𝑒𝑣𝑦 (𝑑) ∗ 𝑥𝑡 (9)

F. Stop or repeat

Stop if the algorithm exceeds the defined number of

iterations. Otherwise, continue step 2.

IV. The Proposed Approaches

This section explains the discrete and combinatorial DA,

the hybrid DAPSO for TCP, and the TCM procedure to

remove the redundant test cases.

A. Discrete and Combinatorial DA

The DA was initially designed with the goal of continuous

optimization in mind. We have presented a discrete and

combinatorial DA since our topic is associated with that. All

objects are encoded using permutation, i.e., test numbers, as it

is a combinatorial problem. The main difference that occurs

between the continuous and combinatorial optimization is in

the population update. Here we modify the continuous values

to permuted numbers, whereas the original approach works

with continuous values [9].

In other words, an adaptation strategy inspired by the

asexual reproduction mechanism [20-21] is used to update the

population's infeasible solutions. The real numbers are then

converted to approximate integer values. Finally, individuals

who are out of bounds and duplicates are substituted with don't

care conditions (*). The previous solution is then replaced for

these items in the same sequence as they appeared in the final

solution [9]. For instance, when x= [3,2,4,1,5,6] is updated to

y= [3.1,5.7,4.2,3.5,1.3,7.5], y is adjusted to [3,5,4,3,1,7],

yielding [3,5,4,*,1,*]. The new offspring acquire the

remaining individuals (genetic characteristics) with the

assistance of the prior solution (parent) to develop a proper

solution as [3,5,4,2,1,6].

B. Discrete and Combinatorial DAPSO

The random initialization and levy flights strengthen the

exploration capability of the dragonfly algorithm. However, it

discards the fitness values below the global solution and does

not keep track of the potential solutions which may converge

to global optima. This lack of internal memory may stick the

algorithm in local optima or converged slowly. Hence, it is

improved by adding internal memory to save the potential

solutions.

It is done by keeping track of the best fitness values

obtained by the dragonflies during the iterations and saved in

𝐷𝐴𝑝𝑏𝑒𝑠𝑡 and 𝐷𝐴𝑔𝑏𝑒𝑠𝑡 , respectively. It helps in avoiding

local optima. Furthermore, it is followed by iterative

hybridization with PSO. PSO is initialized with 𝐷𝐴𝑝𝑏𝑒𝑠𝑡 and

𝐷𝐴𝑔𝑏𝑒𝑠𝑡 solutions to exploit these potential areas for better

solutions. In this way, the hybrid algorithm can balance the

exploration with DA and exploitation with the help of PSO

[18]. The position and velocity equations of the PSO are given

as:

 𝑣𝑡+1
𝑖 = 𝑤𝑣𝑡

𝑖 + 𝑐1𝑟1(𝐷𝐴𝑝𝑏𝑒𝑠𝑡𝑡
𝑖 − 𝑥𝑡

𝑖) +

 𝑐2𝑟2(𝐷𝐴𝑔𝑏𝑒𝑠𝑡𝑡
𝑔

− 𝑥𝑡
𝑖) (10)

 𝑥𝑡+1
𝑖 = 𝑥𝑡

𝑖 + 𝑣𝑡+1
𝑖 (11)

C. Test Case Minimization

We included a redundancy reduction technique after the

algorithm to lower the cost and time budget [6]. In other words,

it minimizes the test suite size of the current best solution

obtained. It selects only those initial test cases that give

complete fault coverage. Moreover, it also tells how precisely

the proposed algorithms prioritize the test suite. In other words,

whether the algorithm is selecting the critical test cases first or

it's a random selection. Algorithm 1 and 2 show the pseudo-

codes of the discrete DA and DAPSO.

V. Experimental Settings

This section details the subject programs, performance

measures and the algorithms' parameters information used to

evaluate the proposed work.

A. Subject Programs

The experiments are carried out on the software benchmark

repository's subject programs [22]. These programs range in

size from small to large. As a result, they help in checking the

performance fluctuation with the test suite size scalability.

Table 1 lists the specifics of the subject programs.

Additionally, the methods are tested using MATLAB R2017,

loaded on an HP laptop with 4GB RAM, Intel i5 CPU, and

Windows 10.

B. Performance Measures

TCP and TCM's well-known performance measures are

utilized for evaluation, i.e., APFD and TMP as described

below:

1) Average Percentage of Fault Detection (APFD)

It calculates the weighted sum of the covered faults based

on their test suite location [6]:

 𝐴𝑃𝐹𝐷 = 1 −
𝑇𝐹1+𝑇𝐹2+⋯+𝑇𝐹𝑛

𝑚𝑛
+

1

2𝑛
 (12)

here 𝑚 is the faults covered by the test suite (size 𝑛). APFD

value ranges in (0, 100), and higher is better.

2) Test Minimization Percentage (TMP)

It is the percentage of the redundant test suite (𝑟) to the

original test suite (𝑛) [7].

 𝑇𝑀𝑃 =
𝑟

𝑛
∗ 100 (13)

Furthermore, the proposed approaches are evaluated in

comparison to the GA [12], PSO [7], BAT [15] and RS.

Finally, because of the algorithms' stochastic character, 30

runs of each algorithm is performed, and the average value is

obtained to measure the performance.

C. Parameter Settings

The parameters play an important role in enhancing the

speed and effectiveness of the algorithm [12]. Hence, we have

selected the parameters by trial and error method followed by

Taguchi design of experiments (see Table 2). This method is

used to fine-tune the parameters of the algorithms. It uses the

signal to noise ratio (SNR) to check the sensitivity of the

controlled factors (signal) against the uncontrollable factors

(noise) [9]. Since TCP is the maximization problem, so higher

the SNR, the better will be the results.

MIR Labs, USA

Case

Studies

Subject

Programs

LOC Number of

Test Cases

Number

of faults

CS1 Present 44591 32 139

CS2 Paint 18376 424 148

CS3 Word 4893 772 224

CS4 Spreadsheet 12791 1172 139

Table 1. Software under test

Approaches Parameters

GA pcorss=0.8

pmut=0.1

Selecion= Tournament

Crossover: ordered

Mutation:swap

PSO c1=1.5, c2=2,

wmax=0.4, wmin=0.8

BAT r0=0.001, r0min =0, r0max =1,

fmin =0, fmax =1.5,

α=0.9, γ =0.99

DA s=0.2, a=0.25, c=0.6,

f=0.8, e=0.8

DAPSO s=0.2, a=0.25, c=0.6,

f=0.8, e=0.8,

c1=2, c2=1.5,

wmax=0.5, wmin=0.9

Common Parameters MaxPop=100,

MaxIter=1000,

MaxRuns=30

Table 2. Parameter Values

Approaches CS1 CS2 CS3 CS4 Tukey group ranking

DAPSO 90.425 93.648 95.885 94.615 A

DA 88.783 92.110 94.869 93.358 B

GA 87.516 91.171 93.937 92.292 C

PSO 86.018 89.484 92.493 91.094 D

BAT 84.332 87.496 89.459 90.076 E

RS 82.587 86.774 88.270 88.422 F

Table 3. APFD values comparisons

Case Studies Source DF Adj SS Adj MS F-Value P-Value

CS1 Factor 5 1254.5 250.907 154.72 0

 Error 174 282.2 1.622

 Total 179 1536.7

CS2 Factor 5 1014.2 202.848 137.21 0

 Error 174 257.2 1.478

 Total 179 1271.5

CS3 Factor 5 1388.2 277.649 187.63 0

 Error 174 257.5 1.48

 Total 179 1645.7

CS4 Factor 5 759.9 151.98 104.83 0

 Error 174 252.3 1.45

 Total 179 1012.2

Table 4. ANOVA Analysis Of The Algorithms For TCP

MIR Labs, USA

VI. Results and Analysis

It experimentally tests the proposed algorithms for TCP and

TCM using subject programs. Alternatively, it determines the

algorithm's performance over a wide variety of test cases.

One-way ANOVA test having a level of significance of 0.05

is also performed to statistically assess the algorithms'

performance [9] with the following hypothesis:

Null Hypothesis: 𝜇𝑎 = 𝜇𝑏

Alternate Hypothesis: 𝜇𝑎 ≠ 𝜇𝑏

In other words, the p-value < 0.05 rejects the null

hypothesis inferring that the algorithms' means are different.

Else, there is a statistically insignificant difference among the

algorithms. The results are further analyzed for pairwise

comparisons of the means of the algorithms. We have used

the Tukey HSD post hoc test has been used for the pairwise

comparisons. This test separates the algorithms ranking them

according to their mean fitness values. If two algorithms do

not share the same letter, then they are statistically different.

Else they are statistically insignificant. Moreover, boxplots for

APFD values display graphical statistics, and interval plots

indicate a 95 % confidence limit of TMP.

A. Test Case Prioritization

Table 3 shows the average APFD values of 30 runs for each

case study and the Tukey group ranking. The ANOVA

analysis of the groups of each subject program is shown in

Table 4. It consists of the degree of freedom, means square

error, F-value and the p-values, respectively. In addition, the

detailed information of the pairwise comparisons of the

algorithms is presented in Table 5, containing the difference

of means, standard error of differences, t-values and adjusted

p-values for all the case studies.

It is observed that all the nature-inspired approaches are

superior to the baseline approach, RS. On the other hand, the

comparison amongst the nature-inspired algorithms revealed

that the proposed DAs outperform the GA, PSO and BAT in

all case studies. With a p-value < 0.05, all algorithms are

statistically distinct from one another (see Table 4). The

boxplots in Figure 1 graphically presents the distribution of

the 30 best values obtained from 30 runs of each algorithm.

Compared to other algorithms, the compressed boxplot

revealed that the hybrid DAPSO delivers the most stable

results. It is evident from the figure, as the program's size

grows, DAPSO's boxplot becomes denser than other

compared algorithms.

B. Test Case Minimization

Table 6 shows the mean TMP values of all the algorithms

and the Tukey group ranking. ANOVA analysis and the Tukey

HSD simultaneous difference of the means for pairwise

comparisons of the algorithms are presented in Tables 7 and

8. According to table 6, all of the nature-inspired algorithms

are superior to RS. The ANOVA test further confirms that

algorithms have a statistically different mean. Tukey HSD test

reveals that PSO and GA are statistically insignificant (see

Table 8). On the other hand, Table 6 shows that the numerical

mean value of the GA is higher.

The 95% Confidence Interval plots have been shown in

Figure 2, which depicts that the proposed DAPSO

outperformed all the other algorithms, and DA is the first

runner up followed by GA, PSO, BAT and RS. It's also worth

noting that the variance across case studies varies. It might be

related to the subject program's peculiarities, such as the fact

that the spreadsheet has more redundant test cases than the

other programs. It confirms that as the size of the test suite

increases, the redundancy increases.

Figure 1. APFD Boxplots of the Case Studies

Bajaj and Abraham

68

Case Studies

Difference of

levels

Difference of

means

SE of

Difference 95% CI T-value

Adjusted

p-value

CS1 GA - RS 4.929 0.329 (3.981, 5.878) 14.99 0

 PSO - RS 3.431 0.329 (2.483, 4.380) 10.44 0

 BAT - RS 1.745 0.329 (0.797, 2.694) 5.31 0

 DA - RS 6.196 0.329 (5.247, 7.145) 18.84 0

 DAPSO - RS 7.838 0.329 (6.889, 8.786) 23.84 0

 PSO - GA -1.498 0.329 (-2.446, -0.549) -4.55 0

 BAT - GA -3.184 0.329 (-4.132, -2.235) -9.68 0

 DA - GA 1.267 0.329 (0.318, 2.215) 3.85 0.002

 DAPSO - GA 2.909 0.329 (1.960, 3.857) 8.85 0

 BAT - PSO -1.686 0.329 (-2.635, -0.738) -5.13 0

 DA - PSO 2.765 0.329 (1.816, 3.713) 8.41 0

 DAPSO - PSO 4.406 0.329 (3.458, 5.355) 13.4 0

 DA - BAT 4.451 0.329 (3.502, 5.399) 13.54 0

 DAPSO - BAT 6.092 0.329 (5.144, 7.041) 18.53 0

 DAPSO - DA 1.642 0.329 (0.693, 2.590) 4.99 0

CS2 GA - RS 4.396 0.314 (3.491, 5.302) 14 0

 PSO - RS 2.71 0.314 (1.804, 3.616) 8.63 0

 BAT - RS 1.172 0.314 (0.266, 2.078) 3.73 0.003

 DA - RS 5.335 0.314 (4.430, 6.241) 17 0

 DAPSO - RS 6.874 0.314 (5.969, 7.780) 21.9 0

 PSO - GA -1.686 0.314 (-2.592, -0.781) -5.37 0

 BAT - GA -3.224 0.314 (-4.130, -2.319) -10.27 0

 DA - GA 0.939 0.314 (0.033, 1.845) 2.99 0.037

 DAPSO - GA 2.478 0.314 (1.572, 3.384) 7.89 0

 BAT - PSO -1.538 0.314 (-2.444, -0.633) -4.9 0

 DA - PSO 2.625 0.314 (1.720, 3.531) 8.36 0

 DAPSO - PSO 4.164 0.314 (3.258, 5.070) 13.26 0

 DA - BAT 4.164 0.314 (3.258, 5.069) 13.26 0

 DAPSO - BAT 5.702 0.314 (4.797, 6.608) 18.16 0

 DAPSO - DA 1.539 0.314 (0.633, 2.445) 4.9 0

CS3 GA - RS 5.667 0.314 (4.761, 6.573) 18.04 0

 PSO - RS 4.223 0.314 (3.317, 5.129) 13.45 0

 BAT - RS 1.189 0.314 (0.282, 2.095) 3.78 0.003

 DA - RS 6.598 0.314 (5.692, 7.504) 21.01 0

 DAPSO - RS 7.615 0.314 (6.709, 8.521) 24.25 0

 PSO - GA -1.444 0.314 (-2.350, -0.538) -4.6 0

 BAT - GA -4.478 0.314 (-5.385, -3.572) -14.26 0

 DA - GA 0.931 0.314 (0.025, 1.837) 2.96 0.04

 DAPSO - GA 1.948 0.314 (1.042, 2.854) 6.2 0

 BAT - PSO -3.035 0.314 (-3.941, -2.128) -9.66 0

 DA - PSO 2.375 0.314 (1.469, 3.281) 7.56 0

 DAPSO - PSO 3.392 0.314 (2.486, 4.298) 10.8 0

 DA - BAT 5.41 0.314 (4.503, 6.316) 17.22 0

 DAPSO - BAT 6.427 0.314 (5.520, 7.333) 20.46 0

 DAPSO - DA 1.017 0.314 (0.111, 1.923) 3.24 0.018

CS4 GA - RS 3.87 0.311 (2.973, 4.767) 12.45 0

 PSO - RS 2.672 0.311 (1.775, 3.569) 8.6 0

 BAT - RS 1.654 0.311 (0.757, 2.551) 5.32 0

 DA - RS 4.936 0.311 (4.040, 5.833) 15.88 0

 DAPSO - RS 6.193 0.311 (5.296, 7.090) 19.92 0

 PSO - GA -1.198 0.311 (-2.095, -0.301) -3.85 0.002

 BAT - GA -2.216 0.311 (-3.113, -1.319) -7.13 0

 DA - GA 1.066 0.311 (0.169, 1.963) 3.43 0.01

 DAPSO - GA 2.323 0.311 (1.426, 3.220) 7.47 0

 BAT - PSO -1.018 0.311 (-1.915, -0.121) -3.27 0.016

 DA - PSO 2.264 0.311 (1.367, 3.161) 7.28 0

 DAPSO - PSO 3.521 0.311 (2.624, 4.418) 11.33 0

 DA - BAT 3.282 0.311 (2.385, 4.179) 10.56 0

 DAPSO - BAT 4.539 0.311 (3.642, 5.436) 14.6 0

 DAPSO - DA 1.257 0.311 (0.360, 2.154) 4.04 0.001

Table 5. Tukey post hoc test for difference of means of TCP (Individual confidence level = 99.56%)

Prioritizing and Minimizing the Test Cases using the Dragonfly Algorithms

69

Approaches CS1 CS2 CS3 CS4 Tukey group ranking

DAPSO 53.747 87.325 96.465 97.207 A

DA 50.417 86.674 96.269 96.541 B

GA 46.667 85.967 95.320 95.217 C

PSO 45.375 85.857 95.237 95.054 C

BAT 42.284 85.432 94.598 94.718 D

RS 38.130 84.291 93.622 93.853 E

Table 6. TMP values comparisons

Case Studies Source DF Adj SS Adj MS F-Value P-Value

CS1 Factor 5 4684 936.74 62.79 0

 Error 174 2596 14.92

 Total 179 7279

CS2 Factor 5 163.26 32.6519 110.34 0

 Error 174 51.49 0.2959

 Total 179 214.75

CS3 Factor 5 167.875 33.575 730.24 0

 Error 174 8 0.046

 Total 179 175.875

CS4 Factor 5 227.203 45.4406 948.51 0

 Error 174 8.336 0.0479

 Total 179 235.539

Table 7. ANOVA analysis of the algorithms (TCM)

Figure 2. Minimized Suite size interval plots of case studies

Overall, observations from the tables and figures state a

massive reduction in the test suite size, i.e., almost 87% to 96%

reduction. Though it is required in real-world applications due

to extensive test dataset and limited time budget, yet it may

lead to the deficiency of some important test cases. Because

as the software upgrades, it may discard several test cases that

may be necessary to be executed due to the addition of some

new requirements related to those test cases.

MIR Labs, USA

Case Studies

Difference of

levels

Difference of

means

SE of

Difference 95% CI T-value

Adjusted

p-value

CS1 GA - RS 4.929 0.329 (3.981, 5.878) 14.99 0

 PSO - RS 3.431 0.329 (2.483, 4.380) 10.44 0

 BAT - RS 1.745 0.329 (0.797, 2.694) 5.31 0

 DA - RS 6.196 0.329 (5.247, 7.145) 18.84 0

 DAPSO - RS 7.838 0.329 (6.889, 8.786) 23.84 0

 PSO - GA -1.498 0.329 (-2.446, -0.549) -4.55 0

 BAT - GA -3.184 0.329 (-4.132, -2.235) -9.68 0

 DA - GA 1.267 0.329 (0.318, 2.215) 3.85 0.002

 DAPSO - GA 2.909 0.329 (1.960, 3.857) 8.85 0

 BAT - PSO -1.686 0.329 (-2.635, -0.738) -5.13 0

 DA - PSO 2.765 0.329 (1.816, 3.713) 8.41 0

 DAPSO - PSO 4.406 0.329 (3.458, 5.355) 13.4 0

 DA - BAT 4.451 0.329 (3.502, 5.399) 13.54 0

 DAPSO - BAT 6.092 0.329 (5.144, 7.041) 18.53 0

 DAPSO - DA 1.642 0.329 (0.693, 2.590) 4.99 0

CS2 GA - RS 4.396 0.314 (3.491, 5.302) 14 0

 PSO - RS 2.71 0.314 (1.804, 3.616) 8.63 0

 BAT - RS 1.172 0.314 (0.266, 2.078) 3.73 0.003

 DA - RS 5.335 0.314 (4.430, 6.241) 17 0

 DAPSO - RS 6.874 0.314 (5.969, 7.780) 21.9 0

 PSO - GA -1.686 0.314 (-2.592, -0.781) -5.37 0

 BAT - GA -3.224 0.314 (-4.130, -2.319) -10.27 0

 DA - GA 0.939 0.314 (0.033, 1.845) 2.99 0.037

 DAPSO - GA 2.478 0.314 (1.572, 3.384) 7.89 0

 BAT - PSO -1.538 0.314 (-2.444, -0.633) -4.9 0

 DA - PSO 2.625 0.314 (1.720, 3.531) 8.36 0

 DAPSO - PSO 4.164 0.314 (3.258, 5.070) 13.26 0

 DA - BAT 4.164 0.314 (3.258, 5.069) 13.26 0

 DAPSO - BAT 5.702 0.314 (4.797, 6.608) 18.16 0

 DAPSO - DA 1.539 0.314 (0.633, 2.445) 4.9 0

CS3 GA - RS 5.667 0.314 (4.761, 6.573) 18.04 0

 PSO - RS 4.223 0.314 (3.317, 5.129) 13.45 0

 BAT - RS 1.189 0.314 (0.282, 2.095) 3.78 0.003

 DA - RS 6.598 0.314 (5.692, 7.504) 21.01 0

 DAPSO - RS 7.615 0.314 (6.709, 8.521) 24.25 0

 PSO - GA -1.444 0.314 (-2.350, -0.538) -4.6 0

 BAT - GA -4.478 0.314 (-5.385, -3.572) -14.26 0

 DA - GA 0.931 0.314 (0.025, 1.837) 2.96 0.04

 DAPSO - GA 1.948 0.314 (1.042, 2.854) 6.2 0

 BAT - PSO -3.035 0.314 (-3.941, -2.128) -9.66 0

 DA - PSO 2.375 0.314 (1.469, 3.281) 7.56 0

 DAPSO - PSO 3.392 0.314 (2.486, 4.298) 10.8 0

 DA - BAT 5.41 0.314 (4.503, 6.316) 17.22 0

 DAPSO - BAT 6.427 0.314 (5.520, 7.333) 20.46 0

 DAPSO - DA 1.017 0.314 (0.111, 1.923) 3.24 0.018

CS4 GA - RS 3.87 0.311 (2.973, 4.767) 12.45 0

 PSO - RS 2.672 0.311 (1.775, 3.569) 8.6 0

 BAT - RS 1.654 0.311 (0.757, 2.551) 5.32 0

 DA - RS 4.936 0.311 (4.040, 5.833) 15.88 0

 DAPSO - RS 6.193 0.311 (5.296, 7.090) 19.92 0

 PSO - GA -1.198 0.311 (-2.095, -0.301) -3.85 0.002

 BAT - GA -2.216 0.311 (-3.113, -1.319) -7.13 0

 DA - GA 1.066 0.311 (0.169, 1.963) 3.43 0.01

 DAPSO - GA 2.323 0.311 (1.426, 3.220) 7.47 0

 BAT - PSO -1.018 0.311 (-1.915, -0.121) -3.27 0.016

 DA - PSO 2.264 0.311 (1.367, 3.161) 7.28 0

 DAPSO - PSO 3.521 0.311 (2.624, 4.418) 11.33 0

 DA - BAT 3.282 0.311 (2.385, 4.179) 10.56 0

 DAPSO - BAT 4.539 0.311 (3.642, 5.436) 14.6 0

 DAPSO - DA 1.257 0.311 (0.360, 2.154) 4.04 0.001

Table 8. Tukey post hoc test for difference of means of TCM (Individual confidence level = 99.56%)

Prioritizing and Minimizing the Test Cases using the Dragonfly Algorithms

71

As a result, it can be concluded that the DAPSO and DA

algorithms outperformed all the compared algorithms for TCP

and TCM. Furthermore, the hybrid DAPSO is superior to DA.

VII. Conclusions and Future Work

We have developed a dragonfly algorithm, DA, and its

hybrid with PSO, namely, DAPSO for TCP and TCM and

proposed algorithms were compared to the random search,

GA, BAT, and PSO. The findings showed that the DAPSO

approach outperformed existing techniques for APFD and

TMP performance metrics. Furthermore, statistical tests

proved the proposed algorithm's superiority for test case

prioritization and reduction. Boxplots and interval plots also

revealed the efficacy of the suggested algorithm DAPSO over

its discrete version and other compared algorithms. GA and

PSO have statistically insignificant difference for TCM.

However, GA performed better in terms of numeric values. In

future, the algorithms will be implemented on additional real-

world case studies for better validation. Furthermore,

applications of the alternative versions of dragonfly

algorithms will be explored to enhance the performance

further.

References

[1] Yoo, S. and Harman, M., “Regression Testing

Minimization, Selection and Prioritization: A Survey”,

Software Testing, Verification and Reliability, 22(2),

2012, pp.67-120.

[2] Bajaj, A. and Sangwan, O.P. “A Survey on Regression

Testing using Nature-Inspired Approaches”,

Proceedings of 4th International Conference on

Computing, Communication and Automation (ICCCA),

2018, pp. 1-5, IEEE.

[3] Bajaj, A. and Sangwan, O.P. “A Systematic Literature

Review of Test Case Prioritization Using Genetic

Algorithms”, IEEE Access, 7, 2019, pp. 126355-126375.

[4] Fister Jr, I., Yang, X.S., Fister, I., Brest, J. and Fister, D.,

“A brief review of nature-inspired algorithms for

optimization.” arXiv preprint arXiv, 2013, pp.1307.4186.

[5] Bajaj, A. and Sangwan, O.P., “Nature-Inspired

Approaches to Test Suite Minimization for Regression

Testing”, In Computational Intelligence Techniques and

Their Applications to Software Engineering Problems

CRC Press, 2020, pp. 99-110.

[6] Bajaj, A. and Sangwan, O.P., “Discrete and

Combinatorial Gravitational Search Algorithms for Test

Case Prioritization and Minimization”, International

Journal of Information Technology, 13, 2021, pp. 817-

823.

[7] Bajaj, A. and Sangwan, O.P., “Tri-Level Regression

Testing using Nature-Inspired Algorithms”, Innovations

in Systems and Software Engineering, 17(1), 2021, pp.

1-16.

[8] Mirjalili, S., "Dragonfly algorithm: a new meta-heuristic

optimization technique for solving single-objective,

discrete, and multi-objective problems." Neural

Computing and Applications, 27(4), 2016, pp. 1053-

1073.

[9] Bajaj, A. and Sangwan, O.P., “Discrete Cuckoo Search

Algorithms for Test Case Prioritization”, Applied Soft

Computing, 2021.

[10] Li, Z., Harman, M. and Hierons, R.M., “Search

algorithms for regression test case prioritization.” IEEE

Transactions on software engineering, 33(4), 2007,

pp.225-237.

[11] Chaudhary, N. and Sangwan, O.P. "Multi-Objective Test

Suite Reduction for GUI Based Software Using NSGA-

II." International Journal of Information Technology and

Computer Science. 8, 2016, pp. 59-65.

[12] Bajaj, A. and Sangwan, O.P. “Study the Impact of

Parameter Settings and Operators Role for Genetic

Algorithm Based Test Case Prioritization”, Proceedings

of International Conference on Sustainable Computing

in Science, Technology and Management, 2019, pp.

1564-1569, Elsevier.

[13] Mohapatra, S. K., and Prasad, S., "Test Case Reduction

Using Ant Colony Optimization for Object-Oriented

Program.” International Journal of Electrical &

Computer Engineering, 5(6), 2015, pp. 2088–8708.

[14] Marchetto, A., Scanniello, G., and Susi, A., “Combining

code and requirements coverage with execution cost for

test suite reduction.” IEEE Transactions on Software

Engineering, 45(4), 2017, pp. 363–390.

[15] Bajaj, A. and Sangwan, O.P., “Test Case Prioritization

Using Bat Algorithm”, Recent Advances in Computer

Science and Communications, 14(2), 2021, pp. 593-598.

[16] Khatibsyarbini, M., Isa, M.A., Jawawi, D.N., Hamed,

H.N.A. and Suffian, M.D.M., Test Case Prioritization

Using Firefly Algorithm for Software Testing. IEEE

Access, 7, 2019, pp.132360-132373.

[17] KS, S.R. and Murugan, S., "Memory-based hybrid

dragonfly algorithm for numerical optimization

problems." Expert Systems with Applications, 83, 2017,

pp.63-78.

[18] Sayed, G.I., Tharwat, A. and Hassanien, A.E., “Chaotic

dragonfly algorithm: an improved metaheuristic

algorithm for feature selection.” Applied Intelligence,

49(1), 2019, pp.188-205.

[19] Li, L.L., Zhao, X., Tseng, M.L. and Tan, R.R., “Short-

term wind power forecasting based on support vector

machine with improved dragonfly algorithm.” Journal of

Cleaner Production, 242, 2020, p.118447.

[20] Farasat, A., Menhaj, M.B., Mansouri, T. and Moghadam,

M.R.S., “ARO: A new model-free optimization

algorithm inspired from asexual reproduction.” Applied

Soft Computing, 10(4), 2010, pp.1284-1292.

[21] Mansouri, T., Farasat, A., Menhaj, M.B. and Moghadam,

M.R.S., "ARO: A new model-free optimization

algorithm for real-time applications inspired by the

asexual reproduction." Expert Systems with

Applications, 38(5), 2011, pp.4866-4874.

[22] http://www.cs.umd.edu/~atif/Benchmarks/UMD2005b.h

tml

[23] Sugave, S. R., Patil, S. H., and Reddy, B. E. 2017. DDF:

Diversity dragonfly algorithm for cost-aware test suite

minimization approach for software testing. In 2017

International Conference on Intelligent Computing and

Control Systems, 701–707. IEEE.

http://www.cs.umd.edu/~atif/Benchmarks/UMD2005b.html
http://www.cs.umd.edu/~atif/Benchmarks/UMD2005b.html

