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Abstract: Regression testing is a necessary but costly process. 

It involves re-running all of the test cases each time the software 

is updated. The resources and time needed for retesting can be 

decreased by minimizing redundancy and prioritizing the test 

cases. Furthermore, optimization procedures enhance the 

efficacy of test case prioritization and minimization. In this 

research, we have proposed a discrete and combinatorial 

dragonfly algorithm. In addition, its hybrid version is created 

with a particle swarm optimization algorithm. The suggested 

approaches are compared to the random search, genetic 

algorithm, particle swarm optimization and the bat algorithm. 

The assessment is done on four subject programs of differing 

sizes. The simulation results show that the proposed methods are 

more efficient and effective than the compared algorithms. 

Furthermore, the hybrid algorithm has a compact distribution 

as seen by boxplots and interval plots of the average percentage 

of fault detection and the test minimization percentage. 
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I. Introduction 

To preserve the software's quality, the rapid development 

of software necessitates preliminary testing of updates. 

Therefore, the software is put through regression testing. It 

ensures that the modifications aren't prone to errors and the 

upgrades are compatible with the previous one [1]. However, 

exhaustive retesting is impractical when the size of the test 

suite grows exponentially [2]. According to [9], on average, a 

Google developer tests the software twenty times a day, which 

is a cumbersome task for extensive software. As a result, it is 

separated into three ways to address the time and cost 

constraints: test case minimization (TCM), test case 

prioritization (TCP), and test case selection (TCS) [1]. 

TCP offers certain benefits over TCS and TCM.  Because 

it simply ranks the test cases according to their importance for 

achieving predetermined goals [3]. In contrast, TCS and TCM 

remove the test cases to reduce the effort and time of retesting. 

TCS picks only those test cases affected by updated area, and 

TCM clears the redundant test cases. In other words, they may 

eliminate several crucial test cases [1]. 

Sorting a large number of test cases, on the other hand, is 

time-consuming, making it an NP-hard [3]. Optimization 

methods are effective in resolving these sorts of issues. 

Nature-inspired approaches are such methods that imitate 

natural occurrences to address complicated real-world 

problems [4]. They are becoming more popular as a result of 

their evident and easy implementation [2]. According to the 

source of occurrence, these are grouped into physics/ 

chemistry-inspired, social phenomena-inspired and biology-

inspired methods [4]. 

The majority of regression testing is done using biology-

inspired techniques [5]. However, a small number of 

researchers have used other nature-inspired approaches [6-7]. 

In contrast, recently developed algorithms like the dragonfly 

algorithm are yet to be investigated [2]. Therefore, it motivates 

us to apply the dragonfly algorithms for TCP and TCM in this 

research. The following are the work's key contributions: 

• To suggest a discrete dragonfly algorithm (DA) for 

TCP succeeded by redundancy removal, i.e., TCM. 

• To enhance the DA's effectiveness by hybridizing it 

with particle swarm optimization algorithm (PSO), 

namely, DAPSO. 

• To evaluate the algorithms' performance on various 

subject programs of different sizes using the 

performance measures: average percentage of fault 

detection (APFD) and test minimization percentage 

(TMP). 

• To analyze the proposed approaches w.r.t. the PSO, 

genetic algorithm (GA), BAT algorithm and random 

search (RS). 

Initially, the DA is employed to solve a continuous problem 

[8]. We discretized DA using a fix-up method to patch up the 

infeasible values to the feasible ones [9]. It's also been 

hybridized with PSO, and this upgraded version, DAPSO, 

outperformed the previous one. Furthermore, the TCM 

approach is used to eliminate unnecessary test cases [6]. The 

findings reveal that the suggested methods are successful and 

efficient in tackling the TCP and TCM problems. 

Section 2 discusses the current state of regression testing 

that utilized nature-inspired methods. The DA is described in 

Section 3, and the proposed approaches are explained in 

Section 4. Sections 5 and 6 detail the experimental setup and 

findings, respectively. Section 7 contains the summary of the 

research and the future work. 
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II. Literature Review 

The nature-inspired approaches applied in regression 

testing and the applications of dragonfly algorithms are 

covered in this section. 

Li et al. [10] investigated the search-based approaches' 

performance and the classic methods for TCP. It was observed 

that the search-based techniques are less effective than the 

greedy approach. NSGA-II has been used to reduce the test 

case size and prioritize the test cases based on event coverage 

[11]. The influence of operators and parameter settings on the 

TCP was investigated using GA [12]. It was discovered that 

the method is affected differently by various selection 

operators and parameter values. As a result, the fitness 

function design and parameter selections have a considerable 

impact on algorithm performance [3].  

ACO algorithm was used to reduce the test suite. The 

experiment performed on Java programs revealed that the 

ACO performed better than the classic heuristics [13]. 

Marchetto et al. [14] applied a multi-objective evolutionary 

algorithm considering the requirement coverage, code 

coverage and execution cost as the objective functions. The 

experiments indicated that the proposed method was adequate 

but not efficient than the baseline approaches for reducing the 

test suite size.  

Recently, researchers have begun to apply relatively new 

nature-inspired methods, e.g., using the BAT method for TCP 

yielded encouraging results [15]. Khatibsyarbini et al. [16] 

suggested a flower pollination algorithm for TCP. The 

similarity distance model was the fitness function, and the 

experiment showed that the obtained results were not the same 

as predicted. Sugave et al. [23] used DA for test suite 

minimization, and the results were better than systolic GA, 

greedy and bat algorithms. It prompted us to try out DA for 

solving TCP.  

Mirjalili developed the DA algorithm [8]. It is applied to 

solve various optimization problems, like feature selection 

[17], numerical optimization problems [18] and wind power 

forecasting [19]. Sayed et al. [18] developed a chaotic DA by 

employing ten chaotic maps for the main parameters of the 

DA to enhance the convergence speed and efficiency of the 

algorithm. The experimental results showed that the chaotic 

gauss map outperformed the other maps. DA was iteratively 

hybridized with PSO to enhance the exploitation capability of 

DA. The results were better than the DA, PSO and bat 

algorithms. Li et al. [19] used the improved DA for wind 

power forecasting. The algorithm was enhanced with the 

adaptive learning factor and differential evolution strategy. It 

was applied to support vector machine for optimizing their 

parameters for better prediction accuracy.   

The positive results of DA applications in various 

disciplines encouraged us to investigate the algorithm's 

potential for regression testing. However, to the best of our 

knowledge, we are the first to suggest DA for TCP. For 

mapping the method to the discrete combinatorial problem, 

we employed a fix-up technique [9]. In addition, we have also 

applied the hybrid of the DA and PSO [17] to improve its 

performance. The results validated the proposed algorithms' 

effectiveness. The subsequent section covers the 

fundamentals of the DA. 

III. Dragonfly Algorithm 

The dragonfly algorithm is a swarm intelligence based 

optimization developed by Mirjalili [8]. It is motivated by the 

static and dynamic swarming of dragonflies. It models the 

social interaction behavior of dragonflies in navigating, 

seeking meals, and avoiding opponents to design two crucial 

stages of optimization: exploration and exploitation [16]. 

During the exploitation phase, swarms of dragonflies travel in 

one direction covering long ranges, distracting adversaries 

[17]. However, dragonflies form tiny groups during the 

exploration phase and fly back and forth over a short region, 

searching for food and attracting passing preys [18]. Its 

working is as follows: 

A. Initialization 

The initial population is produced at random. 

B. Fitness evaluation 

The fitness values of the population are evaluated in this 

step. The most widely used fitness function, APFD, is 

employed in the method (see section 5.2). 

C. Update food and enemy sources 

The attraction towards food source and distraction from the 

enemy source are calculated as: 

         𝐹𝑖 = 𝑥+ − 𝑥          (1)  

         𝐸𝑖 = 𝑥− − 𝑥          (2) 

here 𝑥 is the current position, 𝑥+ and 𝑥−  are food and 

enemy sources. 

D. Update the swarming weights, separation, alignment and 

cohesion 

The algorithm employs swarming weights, i.e., separation 

(s), alignment (a), cohesion (c), food factor (f) and enemy 

factor (e) to guide the artificial dragonflies for various paths. 

The separation, alignment, cohesion are given by: 

         𝑆𝑖 = ∑ 𝑥 − 𝑥𝑖
𝑛
𝑖=1          (3) 

         𝐴𝑖 =
∑ 𝑣𝑖

𝑛
𝑖=1

𝑛
             (4) 

         𝐶𝑖 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
− 𝑥         (5) 

here 𝑥𝑖 and 𝑣𝑖 is the position and velocity of 𝑖𝑡ℎ dragonfly 

and 𝑛 is the number of neighboring dragonflies.  

E. Population update  

The neighborhood distance is calculated using Euclidian 

distance among all the dragonflies and select 𝑛  best 

dragonflies using eq. (6)  

       𝑟𝑖𝑗 = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑑
𝑘=1      (6) 

If there is at least one dragonfly in the neighborhood then 

the position is updated using the vectors: step vector (∆𝑥) and 

position vector (𝑥). The step vector is analogous to velocity of 

PSO and is calculated as: 

     ∆𝑥𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤∆𝑥𝑡 (7) 

here 𝑡 is the current iteration. The position of the dragonfly 

is updated using the following equation: 

        𝑥𝑡+1 = 𝑥𝑡 + ∆𝑥𝑡+1      (8)  
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Algorithm 1. Dragonfly Algorithm  

1. Begin 

2. Define the MaxPop, MaxIter 

3. Randomly initialize population and step vector 

4. For t = 1 : MaxIter  

5.    Update the fitness 

6.    Update the swarming weights  

7.    For i = 1 : MaxPop 

8.         Update 𝐹𝑖 , 𝐸𝑖 , 𝑆𝑖, 𝐴𝑖  and 𝐶𝑖 using (1) - (5) 

9.         Update neighboring radius using (6) 

10.         If there is at least one dragonfly near it 

11.              Update step and position vectors using (7) - (8) 

12.          Else 

13.              Update position using (9) 

14.          End if 

15.          Fix up the solution 

16.     End for 

17.     Store best solution 

18.     Eliminate the duplicate test cases 

19.  End for 

20.  End 

  

Algorithm 2. DAPSO Algorithm 

1. Begin 

2. Define the MaxPop, MaxIter 

3. Randomly initialize population and step vector  

4. For t = 1 : MaxIter  

----------------------start of DA-------------------------- 

5.     For i = 1 : MaxPop 

6.         Calculate the fitness f(xi) 

7.         Update DApbest and DAgbest 

8.     End for 

9.   For i = 1 : MaxPop             

10.       Update the swarming weights  

11.       Update 𝐹𝑖 , 𝐸𝑖 , 𝑆𝑖, 𝐴𝑖  and 𝐶𝑖 using (1)-(5) 

12.       Update neighboring radius using (6) 

13.       If there is at least one dragonfly in the vicinity 

14.          Update step and position vectors using (7) - (8) 

15.       Else 

16.          Update position using (9) 

17.       End if 

18.       Fix-up the solution 

19.   End for 

------------end of DA and start of PSO-------------- 

20.   Initialize population with DApbest 

21.   Set gbest to DAgbest 

22.   For t = 1 : MaxIter  

23.        For i=1:MaxPop  

24.              Calculate fitness     

      Update local (pbest) and global best (gbest) 

25.        End for 

26.        For i=1:MaxPop  

27.              Update velocity and position using (10)-(11) 

28.              Fix up the solution 

29.         End for 

30.    End for 

------------------------end of PSO----------------------- 

31. Store best solution 

32. Eliminate the duplicate test cases 

33. End for 

34. End 
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Levy flights are introduced to increase the randomness, 

exploration and exploitation when it does not found any 

dragonfly in the neighboring radius. It is given as: 

        𝑥𝑡+1 = 𝑥𝑡 + 𝐿𝑒𝑣𝑦 (𝑑) ∗ 𝑥𝑡       (9) 

F. Stop or repeat 

Stop if the algorithm exceeds the defined number of 

iterations. Otherwise, continue step 2. 

IV. The Proposed Approaches 

This section explains the discrete and combinatorial DA, 

the hybrid DAPSO for TCP, and the TCM procedure to 

remove the redundant test cases. 

A. Discrete and Combinatorial DA 

The DA was initially designed with the goal of continuous 

optimization in mind. We have presented a discrete and 

combinatorial DA since our topic is associated with that. All 

objects are encoded using permutation, i.e., test numbers, as it 

is a combinatorial problem. The main difference that occurs 

between the continuous and combinatorial optimization is in 

the population update. Here we modify the continuous values 

to permuted numbers, whereas the original approach works 

with continuous values [9].  

In other words, an adaptation strategy inspired by the 

asexual reproduction mechanism [20-21] is used to update the 

population's infeasible solutions. The real numbers are then 

converted to approximate integer values. Finally, individuals 

who are out of bounds and duplicates are substituted with don't 

care conditions (*). The previous solution is then replaced for 

these items in the same sequence as they appeared in the final 

solution [9]. For instance, when x= [3,2,4,1,5,6] is updated to 

y= [3.1,5.7,4.2,3.5,1.3,7.5], y is adjusted to [3,5,4,3,1,7], 

yielding [3,5,4,*,1,*]. The new offspring acquire the 

remaining individuals (genetic characteristics) with the 

assistance of the prior solution (parent) to develop a proper 

solution as [3,5,4,2,1,6]. 

B. Discrete and Combinatorial DAPSO 

The random initialization and levy flights strengthen the 

exploration capability of the dragonfly algorithm. However, it 

discards the fitness values below the global solution and does 

not keep track of the potential solutions which may converge 

to global optima. This lack of internal memory may stick the 

algorithm in local optima or converged slowly. Hence, it is 

improved by adding internal memory to save the potential 

solutions.  

It is done by keeping track of the best fitness values 

obtained by the dragonflies during the iterations and saved in 

𝐷𝐴𝑝𝑏𝑒𝑠𝑡 and 𝐷𝐴𝑔𝑏𝑒𝑠𝑡 , respectively. It helps in avoiding 

local optima. Furthermore, it is followed by iterative 

hybridization with PSO. PSO is initialized with 𝐷𝐴𝑝𝑏𝑒𝑠𝑡 and 

𝐷𝐴𝑔𝑏𝑒𝑠𝑡  solutions to exploit these potential areas for better 

solutions. In this way, the hybrid algorithm can balance the 

exploration with DA and exploitation with the help of PSO 

[18]. The position and velocity equations of the PSO are given 

as: 

                 𝑣𝑡+1
𝑖 = 𝑤𝑣𝑡

𝑖 + 𝑐1𝑟1(𝐷𝐴𝑝𝑏𝑒𝑠𝑡𝑡
𝑖 − 𝑥𝑡

𝑖) + 

                                 𝑐2𝑟2(𝐷𝐴𝑔𝑏𝑒𝑠𝑡𝑡
𝑔

− 𝑥𝑡
𝑖)          (10) 

        𝑥𝑡+1
𝑖 = 𝑥𝑡

𝑖 + 𝑣𝑡+1
𝑖            (11) 

C. Test Case Minimization  

We included a redundancy reduction technique after the 

algorithm to lower the cost and time budget [6]. In other words, 

it minimizes the test suite size of the current best solution 

obtained. It selects only those initial test cases that give 

complete fault coverage. Moreover, it also tells how precisely 

the proposed algorithms prioritize the test suite. In other words, 

whether the algorithm is selecting the critical test cases first or 

it's a random selection. Algorithm 1 and 2 show the pseudo-

codes of the discrete DA and DAPSO. 

V. Experimental Settings 

This section details the subject programs, performance 

measures and the algorithms' parameters information used to 

evaluate the proposed work. 

A. Subject Programs 

The experiments are carried out on the software benchmark 

repository's subject programs [22]. These programs range in 

size from small to large. As a result, they help in checking the 

performance fluctuation with the test suite size scalability. 

Table 1 lists the specifics of the subject programs. 

Additionally, the methods are tested using MATLAB R2017, 

loaded on an HP laptop with 4GB RAM, Intel i5 CPU, and 

Windows 10. 

B. Performance Measures 

TCP and TCM's well-known performance measures are 

utilized for evaluation, i.e., APFD and TMP as described 

below: 

1) Average Percentage of Fault Detection (APFD) 

It calculates the weighted sum of the covered faults based 

on their test suite location [6]: 

     𝐴𝑃𝐹𝐷 = 1 −
𝑇𝐹1+𝑇𝐹2+⋯+𝑇𝐹𝑛

𝑚𝑛
+

1

2𝑛
   (12) 

here 𝑚 is the faults covered by the test suite (size 𝑛). APFD 

value ranges in (0, 100), and higher is better. 

2) Test Minimization Percentage (TMP) 

It is the percentage of the redundant test suite (𝑟) to the 

original test suite (𝑛) [7]. 

                            𝑇𝑀𝑃 =
𝑟

𝑛
∗ 100                    (13) 

Furthermore, the proposed approaches are evaluated in 

comparison to the GA [12], PSO [7], BAT [15] and RS. 

Finally, because of the algorithms' stochastic character, 30 

runs of each algorithm is performed, and the average value is 

obtained to measure the performance. 

C. Parameter Settings 

The parameters play an important role in enhancing the 

speed and effectiveness of the algorithm [12]. Hence, we have 

selected the parameters by trial and error method followed by 

Taguchi design of experiments (see Table 2). This method is 

used to fine-tune the parameters of the algorithms. It uses the 

signal to noise ratio (SNR) to check the sensitivity of the 

controlled factors (signal) against the uncontrollable factors 

(noise) [9]. Since TCP is the maximization problem, so higher 

the SNR, the better will be the results.  
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Case 

Studies 

Subject 

Programs 

LOC Number of 

Test Cases 

Number 

of faults 

CS1 Present 44591 32 139 

CS2 Paint 18376  424 148 

CS3 Word 4893 772 224 

CS4 Spreadsheet 12791 1172 139 

Table 1. Software under test 

 

 

Approaches Parameters 

GA pcorss=0.8  

pmut=0.1 

Selecion= Tournament 

Crossover: ordered 

Mutation:swap 

PSO c1=1.5, c2=2,  

wmax=0.4, wmin=0.8 

BAT r0=0.001, r0min =0, r0max =1,  

fmin =0, fmax =1.5,  

α=0.9, γ =0.99 

DA s=0.2, a=0.25, c=0.6,  

f=0.8, e=0.8 

DAPSO s=0.2, a=0.25, c=0.6,  

f=0.8, e=0.8,  

c1=2, c2=1.5,  

wmax=0.5, wmin=0.9 

Common Parameters MaxPop=100,  

MaxIter=1000, 

MaxRuns=30 

Table 2. Parameter Values 

 

 

Approaches CS1 CS2 CS3 CS4 Tukey group ranking 

DAPSO 90.425 93.648 95.885 94.615 A      

DA 88.783 92.110 94.869 93.358  B     

GA 87.516 91.171 93.937 92.292   C    

PSO 86.018 89.484 92.493 91.094    D   

BAT 84.332 87.496 89.459 90.076     E  

RS 82.587 86.774 88.270 88.422      F 

Table 3. APFD values comparisons 

 

 

Case Studies Source DF Adj SS Adj MS F-Value P-Value 

CS1 Factor 5 1254.5 250.907 154.72 0 

 Error 174 282.2 1.622     

 Total 179 1536.7       

CS2 Factor 5 1014.2 202.848 137.21 0 

 Error 174 257.2 1.478     

 Total 179 1271.5       

CS3 Factor 5 1388.2 277.649 187.63 0 

 Error 174 257.5 1.48     

 Total 179 1645.7       

CS4 Factor 5 759.9 151.98 104.83 0 

 Error 174 252.3 1.45     

 Total 179 1012.2       

Table 4. ANOVA Analysis Of The Algorithms For TCP 
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VI. Results and Analysis 

It experimentally tests the proposed algorithms for TCP and 

TCM using subject programs. Alternatively, it determines the 

algorithm's performance over a wide variety of test cases. 

One-way ANOVA test having a level of significance of 0.05 

is also performed to statistically assess the algorithms' 

performance [9] with the following hypothesis: 

Null Hypothesis: 𝜇𝑎 = 𝜇𝑏  

Alternate Hypothesis: 𝜇𝑎 ≠ 𝜇𝑏  

In other words, the p-value < 0.05 rejects the null 

hypothesis inferring that the algorithms' means are different. 

Else, there is a statistically insignificant difference among the 

algorithms. The results are further analyzed for pairwise 

comparisons of the means of the algorithms.  We have used 

the Tukey HSD post hoc test has been used for the pairwise 

comparisons. This test separates the algorithms ranking them 

according to their mean fitness values. If two algorithms do 

not share the same letter, then they are statistically different. 

Else they are statistically insignificant. Moreover, boxplots for 

APFD values display graphical statistics, and interval plots 

indicate a 95 % confidence limit of TMP. 

A. Test Case Prioritization 

Table 3 shows the average APFD values of 30 runs for each 

case study and the Tukey group ranking. The ANOVA 

analysis of the groups of each subject program is shown in 

Table 4. It consists of the degree of freedom, means square 

error, F-value and the p-values, respectively. In addition, the 

detailed information of the pairwise comparisons of the 

algorithms is presented in Table 5, containing the difference 

of means, standard error of differences, t-values and adjusted 

p-values for all the case studies.  

It is observed that all the nature-inspired approaches are 

superior to the baseline approach, RS. On the other hand, the 

comparison amongst the nature-inspired algorithms revealed 

that the proposed DAs outperform the GA, PSO and BAT in 

all case studies. With a p-value < 0.05, all algorithms are 

statistically distinct from one another (see Table 4). The 

boxplots in Figure 1 graphically presents the distribution of 

the 30 best values obtained from 30 runs of each algorithm. 

Compared to other algorithms, the compressed boxplot 

revealed that the hybrid DAPSO delivers the most stable 

results. It is evident from the figure, as the program's size 

grows, DAPSO's boxplot becomes denser than other 

compared algorithms.  

B. Test Case Minimization 

Table 6 shows the mean TMP values of all the algorithms 

and the Tukey group ranking. ANOVA analysis and the Tukey 

HSD simultaneous difference of the means for pairwise 

comparisons of the algorithms are presented in Tables 7 and 

8. According to table 6, all of the nature-inspired algorithms 

are superior to RS. The ANOVA test further confirms that 

algorithms have a statistically different mean. Tukey HSD test 

reveals that PSO and GA are statistically insignificant (see 

Table 8). On the other hand, Table 6 shows that the numerical 

mean value of the GA is higher.  

The 95% Confidence Interval plots have been shown in 

Figure 2, which depicts that the proposed DAPSO 

outperformed all the other algorithms, and DA is the first 

runner up followed by GA, PSO, BAT and RS. It's also worth 

noting that the variance across case studies varies. It might be 

related to the subject program's peculiarities, such as the fact 

that the spreadsheet has more redundant test cases than the 

other programs. It confirms that as the size of the test suite 

increases, the redundancy increases.  

 

 

  

 

Figure 1. APFD Boxplots of the Case Studies 
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Case Studies 

Difference of 

levels 

Difference of 

means 

SE of 

Difference 95% CI T-value 

Adjusted 

p-value 

CS1 GA - RS 4.929 0.329 (3.981, 5.878) 14.99 0 

 PSO - RS 3.431 0.329 (2.483, 4.380) 10.44 0 

 BAT - RS 1.745 0.329 (0.797, 2.694) 5.31 0 

 DA - RS 6.196 0.329 (5.247, 7.145) 18.84 0 

 DAPSO - RS 7.838 0.329 (6.889, 8.786) 23.84 0 

 PSO - GA -1.498 0.329 (-2.446, -0.549) -4.55 0 

 BAT - GA -3.184 0.329 (-4.132, -2.235) -9.68 0 

 DA - GA 1.267 0.329 (0.318, 2.215) 3.85 0.002 

 DAPSO - GA 2.909 0.329 (1.960, 3.857) 8.85 0 

 BAT - PSO -1.686 0.329 (-2.635, -0.738) -5.13 0 

 DA - PSO 2.765 0.329 (1.816, 3.713) 8.41 0 

 DAPSO - PSO 4.406 0.329 (3.458, 5.355) 13.4 0 

 DA - BAT 4.451 0.329 (3.502, 5.399) 13.54 0 

 DAPSO - BAT 6.092 0.329 (5.144, 7.041) 18.53 0 

 DAPSO - DA 1.642 0.329 (0.693, 2.590) 4.99 0 

CS2 GA - RS 4.396 0.314 (3.491, 5.302) 14 0 

 PSO - RS 2.71 0.314 (1.804, 3.616) 8.63 0 

 BAT - RS 1.172 0.314 (0.266, 2.078) 3.73 0.003 

 DA - RS 5.335 0.314 (4.430, 6.241) 17 0 

 DAPSO - RS 6.874 0.314 (5.969, 7.780) 21.9 0 

 PSO - GA -1.686 0.314 (-2.592, -0.781) -5.37 0 

 BAT - GA -3.224 0.314 (-4.130, -2.319) -10.27 0 

 DA - GA 0.939 0.314 (0.033, 1.845) 2.99 0.037 

 DAPSO - GA 2.478 0.314 (1.572, 3.384) 7.89 0 

 BAT - PSO -1.538 0.314 (-2.444, -0.633) -4.9 0 

 DA - PSO 2.625 0.314 (1.720, 3.531) 8.36 0 

 DAPSO - PSO 4.164 0.314 (3.258, 5.070) 13.26 0 

 DA - BAT 4.164 0.314 (3.258, 5.069) 13.26 0 

 DAPSO - BAT 5.702 0.314 (4.797, 6.608) 18.16 0 

 DAPSO - DA 1.539 0.314 (0.633, 2.445) 4.9 0 

CS3 GA - RS 5.667 0.314 (4.761, 6.573) 18.04 0 

 PSO - RS 4.223 0.314 (3.317, 5.129) 13.45 0 

 BAT - RS 1.189 0.314 (0.282, 2.095) 3.78 0.003 

 DA - RS 6.598 0.314 (5.692, 7.504) 21.01 0 

 DAPSO - RS 7.615 0.314 (6.709, 8.521) 24.25 0 

 PSO - GA -1.444 0.314 (-2.350, -0.538) -4.6 0 

 BAT - GA -4.478 0.314 (-5.385, -3.572) -14.26 0 

 DA - GA 0.931 0.314 (0.025, 1.837) 2.96 0.04 

 DAPSO - GA 1.948 0.314 (1.042, 2.854) 6.2 0 

 BAT - PSO -3.035 0.314 (-3.941, -2.128) -9.66 0 

 DA - PSO 2.375 0.314 (1.469, 3.281) 7.56 0 

 DAPSO - PSO 3.392 0.314 (2.486, 4.298) 10.8 0 

 DA - BAT 5.41 0.314 (4.503, 6.316) 17.22 0 

 DAPSO - BAT 6.427 0.314 (5.520, 7.333) 20.46 0 

 DAPSO - DA 1.017 0.314 (0.111, 1.923) 3.24 0.018 

CS4 GA - RS 3.87 0.311 (2.973, 4.767) 12.45 0 

 PSO - RS 2.672 0.311 (1.775, 3.569) 8.6 0 

 BAT - RS 1.654 0.311 (0.757, 2.551) 5.32 0 

 DA - RS 4.936 0.311 (4.040, 5.833) 15.88 0 

 DAPSO - RS 6.193 0.311 (5.296, 7.090) 19.92 0 

 PSO - GA -1.198 0.311 (-2.095, -0.301) -3.85 0.002 

 BAT - GA -2.216 0.311 (-3.113, -1.319) -7.13 0 

 DA - GA 1.066 0.311 (0.169, 1.963) 3.43 0.01 

 DAPSO - GA 2.323 0.311 (1.426, 3.220) 7.47 0 

 BAT - PSO -1.018 0.311 (-1.915, -0.121) -3.27 0.016 

 DA - PSO 2.264 0.311 (1.367, 3.161) 7.28 0 

 DAPSO - PSO 3.521 0.311 (2.624, 4.418) 11.33 0 

 DA - BAT 3.282 0.311 (2.385, 4.179) 10.56 0 

 DAPSO - BAT 4.539 0.311 (3.642, 5.436) 14.6 0 

 DAPSO - DA 1.257 0.311 (0.360, 2.154) 4.04 0.001 

Table 5. Tukey post hoc test for difference of means of TCP (Individual confidence level = 99.56%) 
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Approaches CS1 CS2 CS3 CS4 Tukey group ranking 

DAPSO 53.747 87.325 96.465 97.207 A     

DA 50.417 86.674 96.269 96.541  B    

GA 46.667 85.967 95.320 95.217   C   

PSO 45.375 85.857 95.237 95.054   C   

BAT 42.284 85.432 94.598 94.718    D  

RS 38.130 84.291 93.622 93.853     E 

Table 6. TMP values comparisons 

 

 

Case Studies Source DF Adj SS Adj MS F-Value P-Value 

CS1 Factor 5 4684 936.74 62.79 0 

 Error 174 2596 14.92     

 Total 179 7279       

CS2 Factor 5 163.26 32.6519 110.34 0 

 Error 174 51.49 0.2959     

 Total 179 214.75       

CS3 Factor 5 167.875 33.575 730.24 0 

 Error 174 8 0.046     

 Total 179 175.875       

CS4 Factor 5 227.203 45.4406 948.51 0 

 Error 174 8.336 0.0479     

 Total 179 235.539       

Table 7. ANOVA analysis of the algorithms (TCM) 

 

 

 

Figure 2. Minimized Suite size interval plots of case studies 

Overall, observations from the tables and figures state a 

massive reduction in the test suite size, i.e., almost 87% to 96% 

reduction. Though it is required in real-world applications due 

to extensive test dataset and limited time budget, yet it may 

lead to the deficiency of some important test cases. Because 

as the software upgrades, it may discard several test cases that 

may be necessary to be executed due to the addition of some 

new requirements related to those test cases.



 

MIR Labs, USA 
 

Case Studies 

Difference of 

levels 

Difference of 

means 

SE of 

Difference 95% CI T-value 

Adjusted 

p-value 

CS1 GA - RS 4.929 0.329 (3.981, 5.878) 14.99 0 

 PSO - RS 3.431 0.329 (2.483, 4.380) 10.44 0 

 BAT - RS 1.745 0.329 (0.797, 2.694) 5.31 0 

 DA - RS 6.196 0.329 (5.247, 7.145) 18.84 0 

 DAPSO - RS 7.838 0.329 (6.889, 8.786) 23.84 0 

 PSO - GA -1.498 0.329 (-2.446, -0.549) -4.55 0 

 BAT - GA -3.184 0.329 (-4.132, -2.235) -9.68 0 

 DA - GA 1.267 0.329 (0.318, 2.215) 3.85 0.002 

 DAPSO - GA 2.909 0.329 (1.960, 3.857) 8.85 0 

 BAT - PSO -1.686 0.329 (-2.635, -0.738) -5.13 0 

 DA - PSO 2.765 0.329 (1.816, 3.713) 8.41 0 

 DAPSO - PSO 4.406 0.329 (3.458, 5.355) 13.4 0 

 DA - BAT 4.451 0.329 (3.502, 5.399) 13.54 0 

 DAPSO - BAT 6.092 0.329 (5.144, 7.041) 18.53 0 

 DAPSO - DA 1.642 0.329 (0.693, 2.590) 4.99 0 

CS2 GA - RS 4.396 0.314 (3.491, 5.302) 14 0 

 PSO - RS 2.71 0.314 (1.804, 3.616) 8.63 0 

 BAT - RS 1.172 0.314 (0.266, 2.078) 3.73 0.003 

 DA - RS 5.335 0.314 (4.430, 6.241) 17 0 

 DAPSO - RS 6.874 0.314 (5.969, 7.780) 21.9 0 

 PSO - GA -1.686 0.314 (-2.592, -0.781) -5.37 0 

 BAT - GA -3.224 0.314 (-4.130, -2.319) -10.27 0 

 DA - GA 0.939 0.314 (0.033, 1.845) 2.99 0.037 

 DAPSO - GA 2.478 0.314 (1.572, 3.384) 7.89 0 

 BAT - PSO -1.538 0.314 (-2.444, -0.633) -4.9 0 

 DA - PSO 2.625 0.314 (1.720, 3.531) 8.36 0 

 DAPSO - PSO 4.164 0.314 (3.258, 5.070) 13.26 0 

 DA - BAT 4.164 0.314 (3.258, 5.069) 13.26 0 

 DAPSO - BAT 5.702 0.314 (4.797, 6.608) 18.16 0 

 DAPSO - DA 1.539 0.314 (0.633, 2.445) 4.9 0 

CS3 GA - RS 5.667 0.314 (4.761, 6.573) 18.04 0 

 PSO - RS 4.223 0.314 (3.317, 5.129) 13.45 0 

 BAT - RS 1.189 0.314 (0.282, 2.095) 3.78 0.003 

 DA - RS 6.598 0.314 (5.692, 7.504) 21.01 0 

 DAPSO - RS 7.615 0.314 (6.709, 8.521) 24.25 0 

 PSO - GA -1.444 0.314 (-2.350, -0.538) -4.6 0 

 BAT - GA -4.478 0.314 (-5.385, -3.572) -14.26 0 

 DA - GA 0.931 0.314 (0.025, 1.837) 2.96 0.04 

 DAPSO - GA 1.948 0.314 (1.042, 2.854) 6.2 0 

 BAT - PSO -3.035 0.314 (-3.941, -2.128) -9.66 0 

 DA - PSO 2.375 0.314 (1.469, 3.281) 7.56 0 

 DAPSO - PSO 3.392 0.314 (2.486, 4.298) 10.8 0 

 DA - BAT 5.41 0.314 (4.503, 6.316) 17.22 0 

 DAPSO - BAT 6.427 0.314 (5.520, 7.333) 20.46 0 

 DAPSO - DA 1.017 0.314 (0.111, 1.923) 3.24 0.018 

CS4 GA - RS 3.87 0.311 (2.973, 4.767) 12.45 0 

 PSO - RS 2.672 0.311 (1.775, 3.569) 8.6 0 

 BAT - RS 1.654 0.311 (0.757, 2.551) 5.32 0 

 DA - RS 4.936 0.311 (4.040, 5.833) 15.88 0 

 DAPSO - RS 6.193 0.311 (5.296, 7.090) 19.92 0 

 PSO - GA -1.198 0.311 (-2.095, -0.301) -3.85 0.002 

 BAT - GA -2.216 0.311 (-3.113, -1.319) -7.13 0 

 DA - GA 1.066 0.311 (0.169, 1.963) 3.43 0.01 

 DAPSO - GA 2.323 0.311 (1.426, 3.220) 7.47 0 

 BAT - PSO -1.018 0.311 (-1.915, -0.121) -3.27 0.016 

 DA - PSO 2.264 0.311 (1.367, 3.161) 7.28 0 

 DAPSO - PSO 3.521 0.311 (2.624, 4.418) 11.33 0 

 DA - BAT 3.282 0.311 (2.385, 4.179) 10.56 0 

 DAPSO - BAT 4.539 0.311 (3.642, 5.436) 14.6 0 

 DAPSO - DA 1.257 0.311 (0.360, 2.154) 4.04 0.001 

Table 8. Tukey post hoc test for difference of means of TCM (Individual confidence level = 99.56%) 
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As a result, it can be concluded that the DAPSO and DA 

algorithms outperformed all the compared algorithms for TCP 

and TCM. Furthermore, the hybrid DAPSO is superior to DA. 

VII. Conclusions and Future Work 

We have developed a dragonfly algorithm, DA, and its 

hybrid with PSO, namely, DAPSO for TCP and TCM and 

proposed algorithms were compared to the random search, 

GA, BAT, and PSO. The findings showed that the DAPSO 

approach outperformed existing techniques for APFD and 

TMP performance metrics. Furthermore, statistical tests 

proved the proposed algorithm's superiority for test case 

prioritization and reduction. Boxplots and interval plots also 

revealed the efficacy of the suggested algorithm DAPSO over 

its discrete version and other compared algorithms. GA and 

PSO have statistically insignificant difference for TCM. 

However, GA performed better in terms of numeric values. In 

future, the algorithms will be implemented on additional real-

world case studies for better validation. Furthermore, 

applications of the alternative versions of dragonfly 

algorithms will be explored to enhance the performance 

further.  
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