
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 13 (2021) pp. 080-090

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 15 Jan 2021; Accepted: 21 May 2021; Published: 13 July 2021

Towards a Semantic Querying Approach For a

Multi-Version OWL 2 DL Ontology

Leila Bayoudhi1, Najla Sassi2 and Wassim Jaziri3

1 MIRACL Laboratory, University of Sfax, Sfax, Tunisia,
bayoudhi.leila@gmail.com

2 CCSE, Taibah University, Medina, Saudi Arabia,

MIRACL Laboratory, University of Sfax, Sfax, Tunisia
sassinajla@yahoo.fr

3 CCSE, Taibah University, Medina, Saudi Arabia,

MIRACL Laboratory, University of Sfax, Sfax, Tunisia

jaziri.wassim@gmail.com

Abstract: The ontology formalizes a given domain of interest

along a specific structure for disambiguating and conveying the

knowledge semantics. This helps to create an explicit shared

consensus on a given domain knowledge. When updating a

domain ontology, it is useful to store ontology versions. Indeed,

this helps to retrieve old critical knowledge through the different

query types which require retrieving knowledge from different

versions. Nonetheless, not all versioning approaches support

conventional queries for OWL 2 DL ontologies such as

cross-version queries. More importantly, they overlook semantic

queries which expect retrieving complete answers with implicit

knowledge. Our paper aims to present our proposed approach to

support ontology engineers in querying an OWL 2 DL ontology

and its evolution history.

Keywords: OWL 2 DL Ontology, Semantics, Cross-version,

Querying, Versioning.

I. Introduction

In the literature, the ontology has been defined along various

definitions. Nonetheless, all researchers concur that it is

undoubtedly the chief specification used for modelling

consensual domain knowledge, and fixing its heterogeneity

and its semantics ambiguities in a formal way. The formal

character of the ontology stems from an ontology language

which turns the modelled knowledge into a machine

understandable one. The ontology formalizes a given domain

of interest along a specific structure which consists of

concepts, properties, instances, relations and axioms.

Particularly, the latter two components are which merely

responsible for the intended use of ontology, i.e.

disambiguating and conveying the knowledge semantics. This

helps to create an explicit shared consensus on a given domain

knowledge.

Like everything in the world, the ontology undergoes

changes over time. According to Klein [1], an ontology

change stems from a change in the domain, a change in the

conceptualization or a change in the specification. A change

in the domain is a modification of the world that the ontology

models. For example, an ontology may change in response to

the merge of two university departments having distinct

administrative structures [2]. A change in the

conceptualization is a modification of the concepts, properties

and relations used to model a domain of interest. It results

from a new usage or from the change of the standpoint from

which the world is seen. For example, a university ontology

from the perspective of students is not as the same as that from

the ministry perspective. Indeed, the university ontology from

the latter viewpoint may include additional knowledge, such

as teachers’ degrees, their identifiers, their hiring date, etc. A

change in the specification corresponds to a change in the

language in which ontology formalizes a domain knowledge.

When updating a domain ontology, it is useful to store

ontology versions [3][4][5]. Indeed, this helps to: (i) keep

track of ontology changes, (ii) retrieve old critical knowledge,

(iii) recover previous domain states, and (iv) study the

evolution history through the different query types which

require retrieving knowledge from different versions, etc.

Specifically, the state-of-the-art storage strategies of ontology

versions perform well some typical queries at the cost of a

high storage space [6]. More importantly, strategies with low

space overhead lose the main specificity of the ontology: the

knowledge semantics modelling. Hence, these strategies

become inconvenient for the queries which require retrieving

not only explicitly but also implicitly stated knowledge.

The major purpose of this paper is to propose an approach

which supports ontology engineers in querying the ontology

and its evolution history, based on the proposed storage

strategy in [7].

The remaining of this paper is structured as follows.

Section II describes the ontology evolution cycle. Section III

outlines and studies the different versioning approaches for

storing and querying ontology versions. Section IV

summarizes the main conclusions drawn from Section III.

Section V outlines the versioned queries considered in our

work and describes the proposed query process. Before

concluding, Section VI describes the architecture of the

proposed query system.

Towards a Semantic Querying Approach For a Multi-Version OWL 2 DL Ontology 81

II. Background

In the literature, several frameworks have been proposed to

cope with both the ontology evolution and versioning. Each of

these frameworks has its own step-based process which

focuses mainly on a specific aspect, e.g. change identification,

change effects, versions comparison, etc. To this end, Zablith

et al. [8] have identified the commonalities among these

frameworks and proposed a unified one. The proposed

framework is a five-step cyclic process in such a way that

each of its steps has been gaining the attraction of researchers

(see Figure 1). In what follows, we outline the different

identified stages and refer the reader to the evolution

process-centric survey of Zablith et al. [8] for more details.

Detecting the need for evolution: It is referred to as “change

capturing” in the evolution process proposed by Stojanovic

[9]. This phase aims at identifying the change to be applied,

either from explicit requirements or from implicit ones. The

explicit requirements are dictated by either ontology

engineers or by ontology users. The implicit requirements

stem from the change discovery methods which include three

changes’ types, namely structure-driven (e.g. deleting a

concept without properties), usage-driven (e.g. deleting

concepts that were never queried), and data-driven (e.g.

deleting a concept without instances).

Suggesting changes: It corresponds to the “change

representation” phase in the evolution process proposed by

Stojanivic [9], and to the “relation discovery” phase in that

proposed by Zablith [10]. This step allows expressing and

formalizing a change in an explicit way which heavily

depends on the ontology language. A research direction

towards automating this step consists in suggesting

appropriate changes based on external knowledge sources

which may be structured (e.g. online ontologies [10], etc) or

unstructured (e.g. text documents [11], etc).

Figure 1. The ontology evolution cycle (adopted from [8]).

Validating changes: According to Zablith et al. [8], this step

has as a purpose validating the suggested changes with regard

to specific domain and formal properties. The domain-based

validation allows determining the relevance of the changes to

the domain. The second kind of validation ensures the

satisfaction of the suggested changes to the DL-related

properties, such as consistency, coherence, or to some custom

validity rules.

Assessing evolution impact: It is referred to as “change

propagation” in the evolution process proposed by Stojanovic

[9]. This step intends to assess the change impacts on the

artifacts which depend on the ontology in question (e.g.

instances, ontologies, applications, etc). This is conducted

using formal or usage-based criteria. The formal criteria allow

evaluating a quantifiable cost of the change impact. The

usage-based criteria allow checking whether a change

invalidates ontology entities (e.g. instances) or other systems

(e.g. applications used to answer queries that depend on the

changed ontology).

Managing changes: This phase consists in managing

changes by recording ontology changes and versions. This

step aims at keeping track of both changes and versions, to

retrieve old critical knowledge and to recover previous

versions.

Our previous work [12][13] studied the “validating changes”

stage, whereas the present work aims at finding solutions

mainly to the “managing changes” stage.

Bayoudhi et al 82

III. Storage and Querying Approaches

Ontology versioning is a key solution to store ontology

versions and to recover previous states of the domain [14]. In

the literature, four main strategies can be distinguished to

store ontology versions [6]:

Independent Copies (IC): It is also referred to as state-based

versioning, version-based strategy or full materialization [3].

This strategy materializes complete ontology versions. If an

ontology change is introduced, a new version having a new

version IRI is created and stored next to previous ones.

Change-Based (CB): It is also referred to as edit-based,

diff-based, delta-based strategy or operation-based versioning.

It just computes and stores the differences (i.e. deltas)

between two consecutive versions next to the root or the

current ontology version.

Timestamp-Based (TB): It stores ontology components

while assigning a temporal validity for each of them.

Hybrid (HB): It combines two or more of the three

aforementioned strategies to keep track of the ontology

evolution history.

It is of crucial interest to store ontology versions along one

of the aforementioned strategies. Indeed, this helps to access

previous versions and to satisfy various retrieval needs. Based

on both a query type (i.e. materialization or structured) and its

focus (i.e. version or delta), Fernandez et al. [6] identified the

following retrieval needs (see Table 1):

Version materialization: This query type reflects a world

state at a given time. It is about retrieving a certain version Vi

which is valid at a given time ti.

Single-version and cross-version structured queries:

These queries require the retrieval of knowledge from a given

version Vi or across several versions, respectively.

Delta materialisation: The result of this query type reflects

the changes performed between two given versions which are

not necessarily consecutive.

Single-delta and cross-delta structured queries: They are

structured queries that are satisfied on a given delta or across

several deltas, respectively. In the latter case, they are mainly

used to study the knowledge evolution over time.

 Type

Focus

Materialization Structured queries

Single time Cross time

Version Version materialisation

e.g. get snapshot at time

ti.

Single-version structured queries

e.g. lectures given by certain teacher

at time ti.

Cross-version structured queries

e.g. subjects who have played the role

of student and teacher of the same

course.

Delta Delta materialisation

e.g. get delta at time ti.

Single-delta structured queries

e.g. students leaving a course between

two consecutive snapshots, i.e.

between ti-1 and ti.

Cross-delta structured queries

e.g. largest variation of students in

the history of the archive.

Table 1. A categorization of queries (adopted from [6]).

The remainder of the present section is devoted to present

and discuss related work to the Independent Copies (IC), the

Timestamp-Based (TB), the Change-Based (CB) and Hybrid

strategies (HB). It also aims to scrutinize the adopted querying

approaches to answer the aforementioned queries.

A. Independent copies approaches

This subsection sheds light on the most important

state-of-the-art work which adopted the Independent Copies

(IC) strategy.

Heflin and Hendler [15] proposed the ontology language

SHOE (Simple HTML Ontology Extensions language). It

allows managing multiple ontology versions by introducing

some useful tags, such as the “use-ontology” and the

“backward compatible-with” tags.

Klein et al. [16] coped with both ontology versions

identification and relationship issues. To address the

identification issue, the authors distinguished logical changes

from non-logical ones. They also distinguished backward

compatible revisions from non-backward compatible ones.

For the ontology versions relationship issue, the authors

proposed to define a set of transformations between two

arbitrary ontology versions in terms of change operations.

They also proposed to define a set of conceptual relationships

 between the components of two ontology versions. These

functionalities were implemented by the Ontoview tool.

Völkel and Groza [17] proposed an approach which is

based on the separation between the management aspects and

the versioning functionality. Regarding the versioning

functionality, the authors coped with structural and semantic

deltas for ontology versions in RDF-based languages. In

addition, they used the blank node enrichment technique for

versioning RDF blank nodes. These functionalities were

implemented by the SemVersion tool.

Sassi et al. [18] defined four criteria to assess the relevance

of ontology versions, namely conceptualization, usage

frequency, abstraction, and completeness. Once a predefined

maximal number of versions is reached, a graph of relevance

is proposed to show the ontology versions relationship after

relevance scores computing. According to this graph, an

optimization process is carried out to remove the least

relevant version.

B. Change-based approaches

The present subsection exposes the literature work which

adopted the change-based strategy for storing ontology

versions.

Cassidy and Ballantine [19] proposed to store revisions as a

sequence of patches (i.e. deltas) for RDF data. Each patch is

made up of two sub-graphs, to represent both the added and

the deleted triples. In addition, contextual information about

revisions is stored. The proposed system is inspired by the

theory of patches implemented in Darcs 1 which is a

1 https://hub.darcs.net/darcs/darcs-reviewed

Towards a Semantic Querying Approach For a Multi-Version OWL 2 DL Ontology 83

distributed version control system devoted for versioning

software source codes.

Dragoni and Ghidini [20] proposed to inject transformation

patterns into an OWL ontology, to keep track of changes.

Moreover, these patterns promote the queries mapping among

all ontology versions. This approach is positioned in the

context of the evaluation of ontology changes on the

effectiveness of information retrieval systems.

Im et al. [21] proposed a version management framework

for RDF triple stores. It is based on storing intermediate deltas

and a snapshot of the current version. To overcome the query

time overhead for reconstructing a given version, the authors

proposed the aggregated delta approach that is based on a

compression algorithm. This solution eliminates duplicate

RDF triples that are issued by both the sequential delta and all

snapshots storage policies. The aggregated delta strategy

performs well cross-delta queries at the cost of a higher

storage space if it is compared with the sequential deltas

strategy. The proposed approach has just considered asserted

triples and not inferred ones while storing RDF deltas.

Kondylakis and Plexousakis [22] coped with query

answering in evolving ontology-based integration systems. In

such environments, the authors proposed a solution based on

rewriting queries among ontology versions rather than

redefining mappings between each ontology version and the

corresponding data source. To this end, they used a high-level

language of changes between the different ontology versions.

The proposed approach is implemented by the web-based

platform exelixis.

Graube et al. [23] proposed a semantic version control

system called R43ples (Revision for triples). It consists in

storing a full copy of a named graph and a Revision

Management Ontology (RMO) in a triple store. Particularly,

the RMO extends the PROV-O ontology [24], by including

the added and the deleted triples and other additional tags

characterizing revisions. To query such an ontology, the

authors extended the SPARQL language using new key words,

such as REVISION, BRANCH, and TAG. Nevertheless, the

authors acknowledged that their solution is efficient for only

medium-sized datasets.

Frommhold et al. [25] conceived a version control system

for RDF datasets and blank nodes. After issuing a SPARQL

update query, a patch (i.e. delta) is created while including the

added and the deleted triples, and the change provenance

information, as well. To do so, they used an RDF versioning

vocabulary based on both the Delta ontology [26] and the

PROV-O ontology [24]. They are both stored in a triple store.

The authors have also implemented the proposed system.

C. Timestamp-based approaches

To keep track of the ontology evolution history, most of

versioning approaches have adopted the timestamp-based

strategy. They are as follows:

Eder et al. [27] used a directed graph to formalize ontology

versioning. This graph represents all versions of ontology

entities. This is mainly carried out by assigning valid time

intervals to each node or edge in this graph. As far as the

implementation for OWL ontologies is concerned, they

proposed three techniques, namely a meta-ontology, a

standard extension, or simply a standard use. However, each

of these solutions has its limitations since it does not include a

temporal semantics that can be supported by existing

reasoning algorithms and other applications.

Bedi et al. [28] proposed a temporal tag-based technique for

versioning OWL ontologies. They augmented every

“rdf:Resource” and “rdf:Id” statement of an OWL document

with new tags, i.e. “rdf:Validity” and “rdf:Timestamp” which

have to be checked and updated with every ontology change.

The authors acknowledged the limits of such an approach

since it produces a crowded document.

In [29], the authors aim at assisting ontology engineers in

understanding and detecting ontology changes. To this end,

they proposed the Change Definition Language (CDL) and

the use of a version log. The CDL is an OWL-based language

that allows users to represent and to understand the meaning

of changes. The version log helps to keep track of all concepts

versions and to detect changes. Two protégé plugins were

developed: the “Version Log Generator” and the “change

detection plugin”.

Chen and Mathews [30] proposed an evolutionary log

which tracks the lifeline of an axiom/annotation in an

evolving ontology. An evolutionary log is made up of axioms

logs each of which characterizes an axiom/annotation by an

anode. The latter represents some metadata, such as the author,

the group to which the author belongs, and timestamps of

creation and retirement. Regarding the implementation, the

authors proved that both the document-centric and the rich

axiom annotation-based approach are not relevant to the

implementation of the proposed framework. Therefore, they

suggested the temporal database, as a potential storage

technique, for its scalability and its efficiency.

Klarman et al. [31] coped with changing definitional

concepts over time in legal domains. To this end, the authors

proposed a versioning strategy which consists in a DL-based

representation. It has a three-layer structure consisting of a

temporal framework, stamps and temporal restrictions. It

allows modelling and switching the different versions of a

concept definition within a single OWL ontology. The

description logic character of the representation promotes a

reasoner support. Nevertheless, an inference system may have

low performance when switching between the versions of

concepts’ definitions.

In [32], The τ–SPARQL language was proposed as a

temporal extension to SPARQL to support both time-point

and temporal queries on RDF data. Two versioning strategies

were used to evaluate such queries namely versioned

snapshots and time-stamped RDF data.

Grandi and Scalas [33] proposed “The Valid Ontology”

approach to cope with the temporal versioning issue of

OWL/XML ontologies. Specifically, this ontology intends to

manage the versions of both classes and property definitions.

The approach consists mainly in augmenting an OWL/XML

ontology document with custom XML markups.

Kirsten et al. [34] proposed a timestamp-based approach

for the efficient storage and management of large biomedical

ontology versions. Such an approach reduces redundancy by

just storing the changed entities. Regarding the

implementation, the authors used a MYSQL database

repository for storing the different versions of ontology

concepts, attributes, and relationships. They stated that their

approach is efficient in terms of storage space and query

Bayoudhi et al 84

performance compared with the native approach where

ontology versions are entirely stored.

In [35], the authors have proposed SPARQL-ST as a

SPARQL extension for executing semantic queries on RDF

datasets containing both spatial and temporal data.

Grandi [36] proposed a set of primitive changes that can be

applied to an RDFS ontology. To cope with temporal

versioning, he augmented RDFS ontology triples with

temporal timestamps, based on the temporal data model

proposed in [37]. To support temporal queries, the author

proposed a SPARQL extension language called T-SPARQL

[38] which reuses some temporal constructs of the temporal

query language TSQL2. Nevertheless, the author did not

provide any implementation to execute the formulated

queries.

Liu [39] stored ontology versions in a relational database.

The motivation behind this choice is avoiding redundancy and

detecting changes between ontology versions. However, the

proposed approach does not support all OWL constructs.

Bereta et al. [40] proposed the stSPARQL language for

querying valid times of linked geospatial data which change

over time.

Grandi [41] proposed a storage schema for multi-version

directed graph-shaped ontologies. The schema consists in a

temporal relationship, i.e. TreeRelation(Id, Pre, Post, Lev,

From, To) which is stored in a temporal relational database.

Such a storage schema allows executing temporal and

personalized queries. In addition, he proposed a list of

maintenance operations. Nonetheless, only ontologies with a

class hierarchy are considered.

For managing OWL 2 ontology versions, Zekri [42]

proposed the τOWL (Temporal OWL 2) framework which is

based on different documents. A conventional schema

document stores an OWL 2 ontology in the RDF/XML syntax.

A conventional ontology instance document is an RDF

document. A temporal schema document is a conventional

schema document which is augmented by physical and logical

annotations. These annotations allow the specification of

which and how ontology components evolve over time. A

temporal document ties the different versions of the other

documents and specifies their relationships. Whenever a

change is applied, a new time-stamped instance document

version is generated. The τOWL-Manager prototype was

developed to implement such an approach.

In [43], the authors constructed the Historical Knowledge

Graph (HKG) to store ontology versions. This graph is made

up of set of vertex V and a set of edges E. V consists of

concepts, their validity periods and attributes. E consists of

both hierarchical and evolutionary relationships. HKG is

applied in three use-cases to support two tasks, namely

information retrieval and maintenance of semantic

annotations. To assess the validity of HKG, the authors used

four medical datasets.

D. Hybrid approaches

So far, there have been few approaches which adopted the

hybrid strategy, to store ontology versions. They are as

follows:

Vander Sande et al. [44] proposed a distributed triple

version control system called R&Wbase (Read-and-Write

base). It is based on a hybrid storage strategy which combines

both the TB and the CB ones. It consists in storing triples

annotated by a context value indicating the version and the

change type, i.e. addition or deletion.

Meinhardt et al. [45] developed the platform TailR, for

storing and accessing the evolution history of linked data

resources. Particularly, the underlying storage approach

combines both the IC and the CB strategies. Indeed, the

proposed storage system distinguishes three types of change

sets, namely snapshot, delta, and delete. To decide on storing

each of them, a set of rules was defined. As far as the

implementation is concerned, two main HTTP APIs have

been used: Push API and a read-only Memento API. The

former is devoted to submitting and storing revisions, whereas

the latter is devoted to accessing information about revisions

on the linked data resources. A relational database

management system was used to store the linked datasets and

revisions information. The platform was implemented as a

Python web service. Nevertheless, the authors acknowledged

that their platform does not support cross-version queries.

Meimaris [4] focused mainly on proposing a new query

language as an extension of SPARQL called the DIACHRON

Query Language. It is used to query data, metadata and

changes over a multi-version RDF dataset. Regarding the

adopted storage strategy, it consists in storing dataset versions

and deltas. This incurs a time overhead while computing and

storing deltas, and a space overhead while storing complete

snapshots. Furthermore, the author used the reification

technique [46] to timestamp ontology entities and axioms,

which slows down the query process [3].

Taelman et al. [47] proposed a hybrid storage approach for

RDF versioned datasets, by combining the different

state-of-the-art storage strategies to ensure querying

efficiency while gaining storage space. Specifically, their

storage strategy lies in keeping the first version and a delta

chain. To fix the redundancies caused by the inherited

changes in the strategy of Im et al. [21], Taelman et al. [47]

proposed to compress these redundancies using the TB

techniques. However, they rather annotated triples using

addition and deletion flags [44] and stored them in

B+trees-based indexes. Furthermore, a local change flag is

added to discern the changes that have been performed with

regard to the stored snapshot. To ensure a more efficient

execution of versioned queries, the authors pre-processed and

stored additional metadata during the ingestion step (i.e. the

step of encoding and storage of triples). Offset and

limits-enabling algorithms were also implemented to execute

three types of queries: Version Materialization (VM), Version

Query (VQ), and Delta Materialization (DQ) to retrieve triples

at, across, and between different dataset versions, respectively.

As a proof of concept, the authors implemented their approach

in the OSTRICH (Offset enabled STore for TRIple

CHangesets) tool. Taelman et al. evaluated their tool, its

underlying storage strategy and its querying algorithms using

the BEAR benchmark [48]. The results of this evaluation

showed that their tool introduces a new trade-off between

three dimensions: storage space, ingestion time and querying

efficiency.

In both [7] and [49], the authors proposed hybrid storage

strategy. It combines both the IC (i.e. Independent Copies)

and the TB (i.e. Timestamp–based) strategies. The IC strategy

Towards a Semantic Querying Approach For a Multi-Version OWL 2 DL Ontology 85

is adopted for the permanent storage (respectively, temporal

storage) of a full copy of the root domain ontology version

(respectively, of the current ontology version). It is also

adopted for storing the reference ontology version. Regarding

the TB strategy, it is used for storing and retrieving the

evolution history. The Change Management tool for OWL 2

DL Ontologies “CAMO” was also developed to implement

the proposed storage strategy.

IV. Discussion and Synthesis

In the light of the above discussions and according to Table 2,

it is obviously noticeable that all the aforementioned basic

strategies (i.e. IC, TB and CB) provide a trade-off between

storage space efficiency and versioned queries processing

overhead [3]. Particularly, the TB strategy can answer

conventional versioned queries with low or medium

complexities. For the sake of a better compromise between

these two dimensions (i.e. space and query overheads),

Stefanidis et al. [3] recommended hybrid approaches over

pure storage ones. In the literature, few attempts have been

proposed in this respect [45][4][47][49].

Another drawn conclusion from Table 3 is that not all

versioning approaches support conventional queries such as

cross-version queries (e.g. [45]). More importantly, they

overlook semantic queries which expect retrieving complete

answers with implicit knowledge. This is explained by the use

of the implementation techniques (e.g. XML, database) which

hinder the support of inference functionalities. Some works

support these queries, but they are either limited to

lightweight ontologies, such as RDFS ontologies [36] or RDF

data [47]. We rather consider ontologies in a standard and

expressive language, i.e. OWL 2 DL [50].

It is also worth mentioning that not all works provide a tool

as a proof of concept of their approaches [51][52], or the

proposed tool does not manage ontology versions [42][47].

Thus, we thought about developing a tool which implements

the proposed querying approach.

In our work, we are interested in two main inter-dependent

issues which are involved in the evolution history

management: the versions storage and the support of

conventional versioned queries. Indeed, we adopted a hybrid

storage strategy which gains space and fosters the efficient

execution of versioned queries which are not considered in

related work. The proposed storage strategy has already been

detailed in both [7] and [49]. The present paper aims to focus

on the querying aspect of our versioning approach.

 Strategies

Retrieval need

Independent Copies (IC) Change-Based (CB) Timestamp-based (TB)

Version materialization Low Medium Medium

Delta materialization Medium Low Low

Single-version structured queries Medium Medium Medium

Cross-version structured queries High High Medium

Single-delta structured queries High Medium Medium

Cross-delta structured queries High High Medium

Table 2. Complexity level of versioned queries (adopted from [53]).

V. Our Querying Approach

The proposed storage strategy in [7] is devoted to trace OWL

ontology versions and to retrieve pertinent information. The

present section aims to emphasize the utility of this strategy

by outlining the versioned queries considered in our work (see

Section A). Thereafter, Section B describes the proposed

query process to answer the different versioned query types.

A. Versioned queries

In the same line as Papakonstantinou et al. [54] and Fernandez

et al. [6], versioned queries are categorized along the type and

 focus. According to the first dimension, three main query

categories are distinguished: Materialization, Single-version

and Cross-version queries. Regarding the second dimension,

the focus of a given query may be either a delta between two

ontology versions or an ontology version which may be the

 current (i.e. modern) or any anterior version (i.e. historical).

These query types have already been defined in Section III.

Figure 2 is an extended version of that of Papakonstantinou

et al. [54]. It shows how so various s query types can be

distinguished based on one type and focus. In the literature,

 structured queries usually refer to issuing interrogations on a

given delta, version, or on more than one version, without

considering inferred knowledge (i.e. the grey-colored query

boxes in Figure 2). This has motivated us to extend the

conventional versioned query types by semantic queries (i.e.

the green-colored boxes in Figure 2).

Semantic queries are interrogations about both asserted and

entailed knowledge. They are mainly enabled using semantic

inference engines (i.e. reasoners). In the present work, beyond

the conventional versioned query types, we also consider

semantic queries that are modern single-version, historical

and cross-version queries.

─ Modern single-version semantic queries: They are

semantic queries that allow retrieving knowledge from the

current ontology version.

─ Historical single-version semantic queries: They are

semantic queries that allow retrieving knowledge from an

 anterior ontology version. In the present work, only the

root ontology version may be targeted for these queries.

─ Cross–version semantic queries: They are semantic queries

that expect an answer from more than an ontology version.

In the present work, these queries are processed by

considering all ontology versions. Nevertheless, we intend

to propose a new query language, for specifying only some

ontology versions.

Bayoudhi et al 86

We note that these query types target the current, root and

reference ontology versions, respectively. Other semantic

query types (e.g. single-delta semantic queries, cross-delta

semantic queries) can be defined by developing an inference

layer on top of the database to take into consideration inferred

knowledge. For more details about our developed hybrid

storage strategy, we refer the reader to our previous work [7].

Table 3. A comparison of versioning approaches.

Work Ontology

language

Storage

strategy

Physical storage

technology

Querying functionality Tool

[15] SHOE IC OWL files - -

[16] DAML+OIL IC OWL files Querying changes. +

[27] Generic TB OWL files - -

[17] RDFS IC Triple store Structural and semantic diffs. +

[29] OWL DL TB OWL files Querying a version log to detect changes. +

[28] OWL TB OWL files - -

[19] RDF CB Relational

database

and triple store

- -

[34] Generic TB Relational

database

Non-semantic queries on the ontology

structure.

-

[55] OWL DL TB OWL files - +

[36] RDFS TB Triple store A temporal SPARQL extenstion:

T-SPARQL.

-

[39] OWL Lite TB Relational

database

Detecting changes using SQL queries. -

[21] RDF CB Relational

database

Different query types, except semantic ones,

are formulated using SQL.

-

[20] OWL CB OWL file Queries mapping among ontology versions -

[22] RDFS CB Triple store Queries rewriting and supporting

cross-version structured queries.

+

[44] RDF HB :TB+CB quad-store SPARQL queries to reconstruct versions. -

 RDF CB triple store Extending SPARQL using new keywords. +

[51] OWL DL CB OWL files - -

[45] RDF HB: IC+CB Relational

database

Basic queries on resources history, but no

focus on cross-version queries.

+

[18] UML IC Relational

database

- +

[25] RDF CB Triple store Retrieving patches via the LUCID endpoint

using predefined parameters.

+

[56] OWL DL TB OWL files - +

[41] Generic TB Relational

database

Personalized queries using SQL. -

[42] OWL 2 TB RDF and XML

files

- +

[4] OWL DL HB:IC+CB Triple store DIACHRON QL, dataset and version listing,

data queries, longitudinal queries, queries on

changes,

mixed queries on changes and data.

+

[47] RDF HB:TB+CB HDT files Versioned queries: VM, DM, and VQ. +

[43] OWL TB OWL file Querying medical documents annotated with

different datasets versions.

-

International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 13 (2021) pp. 080-090

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Figure 2. The considered versioned queries.

B. Versioned queries answering process

In the present work, we adopt a three-step query process

which is depicted by Figure 3.

i. First, a user formulates a versioned query among those

listed in Figure 2.

In this work, we rely mainly on graphic user interfaces to

express the predefined versioned queries. A future research

is directed towards proposing a new string-based query

language to explicitly formulate a versioned query.

ii. Second, the issued query is analysed to determine its type

(i.e. materialization, single-version, or cross-version), its

focus (i.e. delta or version).

In this work, a user is guided by formulating queries in

convenient and dedicated interfaces to each query type.

Nevertheless, our reflection is directed towards proposing a

query parser to determine the query type and focus.

iii. Third, the query is executed and its answer is delivered to

the user.

In this work, the query execution is delegated to the

“state-of-the-art query APIs” (see Section IV). Nonetheless,

we envisage proposing query plans and optimizers to carry

out an efficient answering.

Figure 3. The adopted query process to answer a versioned query.

International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 13 (2021) pp. 080-090

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

VI. Implementation

The architecture of the proposed query system is more

detailed in Figure 4. A semantic query is formulated either in

the DL query tab or in the Snap-SPARQL [57] plugin of the

protégé ontology editor [58]. A structured or materialization

query is formulated through dedicated developed user

interfaces. This query is executed by the query systems, i.e.

native query and query by example of the database

management system DB4O [59].

DB4O (DataBase For Objects) is an open source and easy

to use database management system for object-oriented

databases. DB4O does not have a standard String-based query

language such as SQL for RDBMSs. Nonetheless, it has three

query systems: Query By Example (QBE), Native Query and

SODA (Simple Object Data Access) Query API. Although

SODA is a fast API for processing queries, the first two query

options are the most recommended for developers [59]. Hence,

they are used in the present work to query an ontology

evolution history.

Figure 4. The query system architecture.

VII. Conclusion

An important related issue to ontology versions storage [7] is

their access and the retrieval of old knowledge. In this respect,

three main research streams can be distinguished:

i. Approaches which overlooked the querying issue

[56][18][42]. They were rather limited to proposing a

storage strategy to keep track of the ontology evolution

history.

ii. Approaches which proposed specific storage strategies

while using standard query languages, such as SPARQL

for ontologies and SQL for relational databases

[21][25][41] .

iii. Approaches that proposed new query languages as

extensions to standard ones, to support various

conventional versioned query types [36][4][35][40] .

Our work is in the same line as the second research stream.

Indeed, the ontology evolution history is queried using a

database management system, whereas cross-version and

semantic queries are retrieved from a reference ontology

using a reasoner or a semantics-enabling query language such

as SPARQL 1.1 [60].

In this paper, we outlined some typical versioned queries

(e.g. semantic and multi-version queries). A prototype tool

was also developed to support knowledge engineers in

retrieving the evolution history of an OWL 2 DL ontology.

In the near future, the query tool will be extended by other

querying functionalities. We also plan to make it available

online and to carry out a user study evaluation thereof. In the

same scope, we intend to propose a new query language for

answering multi-version queries.

References

[1] M. Klein, « Change Management for Distributed

Ontologies », PhD Thesis, VRIJE University,

Amesterdam, 2004.

[2] N. F. Noy et M. Klein, « Ontology Evolution: Not the

Same as Schema Evolution », Knowledge and

Information Systems, vol. 6, no 4, p. 428‑440, 2004, doi:

10.1007/s10115-003-0137-2.

[3] K. Stefanidis, I. Chrysakis, et G. Flouris, « On

Designing Archiving Policies for Evolving RDF

Datasets on the Web », in Proceedings of the

International Conference on Conceptual Modeling,

2014, p. 43‑56. doi: 10.1007/978-3-319-12206-9_4.

[4] M. Meimaris, « Managing, Querying and Analyzing Big

Data on the Web », PhD Thesis, University of Thessaly,

Greece, 2018.

[5] F. Zhang, Z. Li, D. Peng, et J. Cheng, « RDF for

temporal data management – a survey », Earth Sci

Inform, vol. 14, no 2, p. 563‑599, 2021, doi:

10.1007/s12145-021-00574-w.

[6] J. D. Fernández, J. Umbrich, A. Polleres, et M. Knuth,

« Evaluating Query and Storage Strategies for RDF

Towards a Semantic Querying Approach For a Multi-Version OWL 2 DL Ontology 89

Archives », Semantic Web, vol. 10, no 2, p. 247‑291,

2019, doi: http://dx.doi.org/10.3233/SW-180309.

[7] L. Bayoudhi, N. Sassi, et W. Jaziri, « A Hybrid Storage

Strategy to Manage the Evolution of an OWL 2 DL

Domain Ontology », in Proceedings of the 21st

International Conference KES-2017, 2017, vol. 112, p.

574‑583. doi: 10.1016/j.procs.2017.08.170.

[8] F. Zablith et al., « Ontology evolution: a process-centric

survey », The Knowledge Engineering Review, vol. 30,

no 01, p. 45‑75, 2015, doi:

10.1017/S0269888913000349.

[9] L. Stojanovic, « Methods and tools for ontology

evolution », PhD Thesis, University of Karlsruhe,

Germany, 2004.

[10] F. Zablith, « Harvesting Online Ontologies for Ontology

Evolution », PhD Thesis, The Open University, United

Kingdom, 2011.

[11] Z. Sellami, « Gestion Dynamique d’Ontologies à partir

de Textes par Systèmes Multi-agents Adaptatifs », PhD

Thesis, University of Toulouse 3 Paul Sabatier (UT3

Paul Sabatier), France, 2012.

[12] L. Bayoudhi, N. Sassi, et W. Jaziri, « Overview and

reflexion on OWL 2 DL ontology consistency rules », in

Proceedings of the Second International Conference on

Internet of things and Cloud Computing, 2017, vol. Part

F1348. doi: 10.1145/3018896.3036376.

[13] L. Bayoudhi, N. Sassi, et W. Jaziri, « How to Repair

Inconsistency in OWL 2 DL Ontology Versions? »,

Data and Knowledge Engineering, vol. 116, p. 138‑158,

2018, doi: 10.1016/j.datak.2018.05.010.

[14] L. Bayoudhi, N. Sassi, et W. Jaziri, « A Survey on

Versioning Approaches and Tools », in Intelligent

Systems Design and Applications, 2021, vol. 1351, p.

1155‑1164. doi: 10.1007/978-3-030-71187-0_107.

[15] J. Heflin et J. Hendler, « Dynamic Ontologies on the

Web », in Proc. of the 17th Nat. Conf. on Artificial

Intelligence, 2000, p. 443‑449.

[16] M. Klein, D. Fensel, A. Kiryakov, et D. Ognyanov,

« Ontology versioning and change detection on the

web », Knowledge Engineering and Knowledge

Management, Proceedings: Ontologies and the

Semantic Web, vol. 2473, p. 197‑212, 2002.

[17] M. Völkel et T. Groza, « SemVersion: RDF-based

ontology versioning system », in Proceedings of the

IADIS International Conference on WWW/Internet,

2006, no Section 6.

[18] N. Sassi, W. Jaziri, et S. Alharbi, « Supporting ontology

adaptation and versioning based on a graph of

relevance », Journal of Experimental & Theoretical

Artificial Intelligence, vol. 28, no 6, p. 1035‑1059, 2016,

doi: 10.1080/0952813X.2015.1056239.

[19] S. Cassidy et J. Ballantine, « Version Control For RDF

Triple Stores », in ICSOFT (ISDM/EHST/DC), 2007, p.

5‑12.

[20] M. Dragoni et C. Ghidini, « Evaluating the impact of

ontology evolution patterns on the effectiveness of

resources retrieval », 2012.

[21] D.-H. Im, S.-W. Lee, et H.-J. Kim, « a Version

Management Framework for Rdf Triple Stores »,

International Journal of Software Engineering and

Knowledge Engineering, vol. 22, no 01, p. 85‑106, 2012,

doi: 10.1142/S0218194012500040.

[22] H. Kondylakis et D. Plexousakis, « Ontology evolution

without tears », Journal of Web Semantics, vol. 19, p.

42‑58, 2013, doi: 10.1016/j.websem.2013.01.001.

[23] M. Graube, S. Hensel, et L. Urbas, « R43ples: Revisions

for Triples An Approach for Version Control in the

Semantic Web », in Proceedings of the 1st Workshop on

Linked Data Quality colocated with 10th International

Conference on Semantic Systems (SEMANTiCS 2014),

2014, vol. 1215.

[24] World Wide Web Consortium, « PROV-O: The PROV

Ontology », W3C Recommendation, 2013.

https://www.w3.org/TR/prov-o/

[25] M. Frommhold, R. N. Piris, N. Arndt, S. Tramp, N.

Petersen, et M. Martin, « Towards Versioning of

Arbitrary RDF Data », in Proceedings of the 12th

International Conference on Semantic Systems

(SEMANTICS 2016), 2016, p. 33‑40. doi:

https://10.1145/2993318.2993327.

[26] T. Berners-Lee et D. Connolly, « Delta: an ontology for

the distribution of differences between RDF graphs ».

2004. [En ligne]. Disponible sur:

https://www.w3.org/DesignIssues/lncs04/Diff.pdf

[27] J. Eder et C. Koncilia, « Modelling changes in

ontologies », in On the Move to Meaningful Internet

Systems 2004: OTM 2004 Workshops, 2004, p. 662‑673.

[28] P. Bedi et S. Marwaha, « Versioning OWL ontologies

using temporal tags », International Journal of

Computer, Electrical, Automation, Control and

Information Engineering, vol. 1, no 3, p. 332‑337, 2007.

[29] P. Plessers, O. De Troyer, et S. Casteleyn,

« Understanding ontology evolution: A change detection

approach », Web Semantics, vol. 5, no 1, p. 39‑49, 2007,

doi: 10.1016/j.websem.2006.11.001.

[30] C. Chen et M. M. Matthews, « A New Approach to

Managing the Evolution of OWL Ontologies », in

Proceedings of The 2008 International Conference on

Semantic Web and Web Services, 2008, no D, p. 57‑63.

[31] S. Klarman, R. Hoekstra, et M. Bron, « Versions and

applicability of concept definitions in legal ontologies »,

in Proceedings of the Fourth OWLED Workshop on

OWL: Experiences and Directions, 2008, vol. 496, no

April.

[32] J. Tappolet et A. Bernstein, « Applied Temporal RDF:

Efficient Temporal Querying of RDF Data with

SPARQL », in The Semantic Web: Research and

Applications, 2009, p. 308‑322.

[33] F. Grandi et M. R. Scalas, « The Valid Ontology: A

simple OWL temporal versioning framework », in

Proceedings of the 3rd International Conference on

Advances in Semantic Processing - SEMAPRO 2009,

2009, p. 98‑102. doi: 10.1109/SEMAPRO.2009.12.

[34] T. Kirsten, M. Hartung, A. Groß, et E. Rahm, « Efficient

Management of Biomedical Ontology Versions », in

Proceedings of the 4th International Workshop on

Ontology Content (OnToContent), 2009, p. 574‑583.

[35] M. Perry, P. Jain, et A. P. Sheth, « SPARQL-ST:

Extending SPARQL to Support Spatiotemporal

Queries », in Geospatial Semantics and the Semantic

Web: Foundations, Algorithms, and Applications, vol.

12, N. Ashish et A. P. Sheth, Éd. Boston, MA: Springer

US, 2011, p. 61‑86. doi: 10.1007/978-1-4419-9446-2_3.

[36] F. Grandi, « Light-weight Ontology Versioning with

Multi-temporal RDF Schema », in Proceedings of The

Bayoudhi et al 90

Fifth International Conference on Advances in Semantic

Processing (SEMAPRO2011), Lisbon, Portugal, 2011,

no c, p. 42‑48.

[37] F. Grandi, « Multi-temporal RDF Ontology

Versioning », in Proceedings of the 3rd International

Workshop on Ontology Dynamics (IWOD@ISWC 2009),

Washington DC, USA, 2009, vol. 519.

[38] F. Grandi, « T-SPARQL: A TSQL2-like temporal query

language for RDF », in Local Proceedings of the

Fourteenth East-European Conference on Advances in

Databases and Information Systems, Novi Sad, Serbia,

2010, vol. 639, p. 21‑30.

[39] K. Liu, « A Method Based on RDB for Detecting

Changes Between Multi-version Ontologies », Journal

of Computational Information Systems, vol. 8, no 8, p.

3293‑3300, 2012.

[40] K. Bereta, P. Smeros, et M. Koubarakis,

« Representation and Querying of Valid Time of Triples

in Linked Geospatial Data », in The Semantic Web:

Semantics and Big Data, 2013, vol. 7882, p. 259‑274.

[41] F. Grandi, « Dynamic class hierarchy management for

multi-version ontology-based personalization », Journal

of Computer and System Sciences, vol. 82, no 1, p. 69‑90,

2016, doi: 10.1016/j.jcss.2015.06.001.

[42] A. Zekri, « Intégration du Temps et du Versionnement

des Schémas dans le Web Sémantique », PhD Thesis,

University of Sfax, Tunisia, 2018.

[43] S. D. Cardoso, M. Da Silveira, et C. Pruski,

« Construction and exploitation of an historical

knowledge graph to deal with the evolution of

ontologies », Knowledge-Based Systems, vol. 194, p.

105508, 2020, doi: 10.1016/j.knosys.2020.105508.

[44] M. Vander Sande, P. Colpaert, R. Verborgh, S. Coppens,

E. Mannens, et R. Van de Walle, « R&Wbase: Git for

triples », in Proceedings of the 6th Workshop on Linked

Data on the Web, 2013, vol. 996.

[45] P. Meinhardt, M. Knuth, et H. Sack, « TailR: A Platform

for Preserving History on the Web of Data », in

Proceedings of the 11th International Conference on

Semantic Systems (SEMANTiCS 2015), 2015, p. 57‑64.

doi: https: //dx.doi.org/10.1145/2814864.2814875.

[46] C. Gutierrez, C. A. Hurtado, et A. Vaisman,

« Introducing time into RDF », IEEE Transactions on

Knowledge and Data Engineering, vol. 19, no 2, p.

207‑218, 2007, doi: 10.1109/TKDE.2007.34.

[47] R. Taelman, M. V. Sande, J. Van Herwegen, E. Mannens,

et R. Verborgh, « Triple Storage for Random-Access

Versioned Querying of RDF Archives », Web Semantics:

Science, Services and Agents on the World Wide Web,

vol. 54, p. 4‑28, 2019, doi:

https://doi.org/10.1016/j.websem.2018.08.001.

[48] J. D. Fernández, A. Polleres, et J. D. Fern, « BEAR:

Benchmarking the Efficiency of RDF Archiving

Archiving », Vienna University of Economics and

Business, Vienna, 2015.

[49] L. Bayoudhi, N. Sassi, et W. Jaziri, « Efficient

management and storage of a multiversion OWL 2 DL

domain ontology », Expert Systems, vol. 36, no 2, p.

e12355, 2019, doi: 10.1111/exsy.12355.

[50] B. Motik et al., « OWL 2 Web Ontology Language -

Structural Specification and Functional-Style Syntax

(Second Edition) », Online, 2012.

https://www.w3.org/TR/owl2-syntax/

[51] P. Pittet, C. Cruz, et C. Nicolle, « An ontology change

management approach for facility management »,

Computers in Industry, vol. 65, no 9, p. 1301‑1315, 2014,

doi: 10.1016/j.compind.2014.07.006.

[52] D. Zheleznyakov, E. Kharlamov, W. Nutt, et D.

Calvanese, « On Expansion and Contraction of DL-Lite

Knowledge Bases », Web Semantics: Science, Services

and Agents on the World Wide Web, vol. 57, p. 100484,

2019, doi:

https://doi.org/10.1016/j.websem.2018.12.002.

[53] J. D. Fernandez, A. Polleres, et J. Umbrich, « Towards

efficient archiving of dynamic linked open data », in

Proceedings of the First DIACHRON Workshop on

Managing the Evolution and Preservation of the Data

Web co-located with 12th European Semantic Web

Conference (ESWC 2015), 2015, vol. 1377, p. 34‑49.

[54] V. Papakonstantinou, I. Fundulaki, et G. Flouris,

« Deliverable 5.2.2: Second Version of the Versioning

Benchmark », The Institute of Computer Science,

FORTH, Greece, Technical Report, 2018.

[55] R. Jedidi, « Approche d’évolution d’ontologie guidée

par des patrons de gestion de changement », PhD Thesis,

University of Paris-Sud XI Orsay, France, 2009.

[56] F. Chamekh, « L’évolution du web de données basée sur

un système multi-agents », PhD Thesis, University of

Lyon, France, 2016.

[57] M. Horridge et M. Musen, « Snap-SPARQL: A Java

Framework for working with SPARQL and OWL », in

Revised Selected Papers of the 12th International

Experiences and Directions Workshop on Ontology

Engineering, 2015, vol. 9557, p. 154‑165. doi:

https://doi.org/10.1007/978-3-319-33245-1_16.

[58] M. A. Musen, « The protégé project », AI Matters, vol. 1,

no 4, p. 4‑12, 2015, doi: 10.1145/2757001.2757003.

[59] J. Paterson, S. Edlich, H. Hörning, et R. Hörning, The

Definitive Guide to db4o. Apress, 2006. [En ligne].

Disponible sur:

https://link.springer.com/book/10.1007%2F978-1-4302

-0176-2

[60] World Wide Web Consortium, « SPARQL 1.1

Overview », 2013.

https://www.w3.org/TR/sparql11-overview/ (consulté le

mai 14, 2019).

Author Biographies

Leila Bayoudhi is a member of the MIRACL laboratory (Multimedia,

InfoRmation Systems and Advanced Computing Laboratory), the University

of Sfax, Tunisia. She received her computer engineer degree in 2012 and her

PhD degree in 2020 from the National Engineering School of Sfax, the

University of Sfax. Her major research interests include ontology engineering

and its related challenges.

Najla Sassi is an assistant professor in computer science at the College of
Computer Science and Engineering, Taibah University, KSA. She received

her master's degree in computer science from the University of Rouen, France

in 2004 and a PhD degree from the University of Sfax in 2011. Her main

interests are artificial intelligence, ontology, and information systems

modelling. Dr Najla Sassi was involved in several projects and has published

several research papers in international journals and conferences.

Wassim Jaziri received his PhD degree in Computer Science in 2004 from

INSA‐Rouen, France. He received an Accreditation to supervise research

(French HDR, a required grade to be a full professor) in computer science in

2010 from Sfax University‐Tunisia. Currently, He is a professor in

computer science at the College of Computer Science and Engineering,

Taibah University, KSA. His main interests are geographic information

systems, spatio-temporal databases, spatial decision aid, data and knowledge

modelling, ontology, and optimization.

