
 
Abstract 

A Watermark hidden in an image is retrieved 
differently fro m the original watermark due  to  the  
frequently  used  round in g  approach.  The  simple  
rounding  will  cause numerous errors in the 
embedded watermark especially when it is large. 
Evolutionary algorithms  (EA)  are  used  to  correct  
the  rounding  errors.  The  main  issue  before 
applying  EAs  to  reduce  the  round in g errors  is  
that the  embedded  data should  be retrieved   
correctly.   Evolutionary   algorithms   are   
commonly   used   as   adaptive approaches that 
provide a randomized , parallel and global search 
method based on the mechanics  of  natural  
selection  and  natural  genetics  in  order  to  find  
solutions  of problems.  We  present  the  
application   o f  Genetic   algorithms   (GA),  
Differential Evolution (DE) and Simplified 
Threshold Accepting algorithm (STA) to enhance 
the watermark  retrieval.  Experimental  results  
show  that  STA  converges  faster  to  the optimal 
solution than DE, which in turn converges faster 
than GA. 
  
1. Introduction 
 

With the large usage of Internet and the 
development in computer industry, the digital 
media, including images, audio and video, are easily  
obtained  in  the  real world. Digital multimedia 
contents suffer from attacks like duplication of 
copyrights, easy modification and transmission over 
the Internet. Digital watermarking of electronic 
images inherently places a digital id entity or 
watermark into the original image itself, to protect 
the ownership of the original sources. 

Digital watermarking can be classified as visible 
and invisible (Shih and Wu, 2005). 

 
 
 
 
 

 
1. The visible watermarks such  as bills,  company  

logos  can  be viewed  by  eyes. Although the 
watermarks are viewed w i t h o u t  a n y  
calculation ,  the  embedded watermarks can b e 
destroyed easily. 

 
2.  In invisible watermarking scheme, the 

embedding locations o f the watermark are secret,  
only  the authorized  persons  can  extract  the  
watermark.  Although  some mathematical   
calculations   required   retrieving   the  
watermark,   the   invisible watermarks are mo re 
secure and robust than visible watermark s. 

 
On the other hand, digital watermarking can also 

be categorized as robust and fragile watermarking.  
Robust watermarks  (Cox et al., 1997; Lin and 
Chen , 2000; Nikolaidis and pitas, 1998) are 
designed to have the ability to detect the 
watermark  after some image  processing  operations  
such  as image  scaling, bending,  cropping,  and so 
on. Robust  watermarks  are  mainly  used  for  
copyright  protection.  In  contrast,  fragile 
watermarks  (Celik  et al., 2002; Wong  ,1998)  are 
designed  to b eco me invalid  after even  the 
slightest  modification o f the watermark ed  image.  
Fragile watermarks  are mainly used for 
authentication purposes. 

Image watermarking  can be performed  in two 
ways, one in spatial domain  and the other  in  
frequency  domain.  In  the  spatial  domain   
(Bruyndonck x  et  al.,  1995; Nikolaidis and Pitas, 
1998), insert the watermark  in to a host image by 
changing the gray levels of some pixels in the host 
image. The disadvantage of this approach is that the 
embedded in formation may be easily  detected  using 
computer analysis. On the other hand, in frequency 
domain (Bas et al., 2002; Huang et al., 2000; Lin 
and Chen, 2000) transform the image into 
frequency domain using Discrete  Cosine 
Transform (DCT),  Discrete  Fourier  Transform  
(DFT) or Discrete  Wavelet Transform (DWT). 
Then embed the watermark in to the coefficients of 
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the transformed image. Though it is difficult to 
detect a watermark in this approach, there are two 
major defects. First, we cannot embed too much 
data in the frequency domain because the quality 
of the host image will be distorted significantly.  
To  increase  the watermark capacity  and 
imperceptibility, combinational  image  watermarking  
in  the  spatial  and  frequency do mains (Shih and 
Wu , 2003) is proposed. Second, the data embedded 
in coefficients of the transformed image will be 
somewhat disturbed due to deviations in converting 
real  numbers  into  integers  (rounding  app roach ) 
in  spatial  domain  (Shih  and  Wu, 2005). To 
reduce rounding errors evolutionary algorithms are 
used and is depicted in Figure 1. In this paper we 
employed DE to enhance the watermark retrieval. 
We also modified the TA algorithm named it STA 
(Simplified TA) and app lied it to retrieve the 
watermark correctly. We compared the performance 
o f GA, DE and STA. 

 
Figure 1. The flowchart showing the usage of 

evolutionary algorithms in reducing rounding 
 
The paper is organized as follows. Section 2 

presents the embedding algorithm. Section 3 
introduces the errors caused by deviations in 
translating real numbers into integers and the 
overview o f evolutionary algorithms  (EA) used in 
reducing  errors. Section 4 describes  proposed  
methodology of applying  EA’s  to solve the 
problem. Experimental  results  are  presented  in  
section  5. Finally  conclusions  are  made  in 
section 6. 
 
2. Embedding Algorithm 
 

Several app roaches can be used in embedding a 
watermark in the frequency domain. In this paper 
we embed the watermark  in the coefficients of the 
transformed  image (Shih and Wu , 2005). The 
transformation functions generally used are DCT, 

DFT and DWT. F ig.1 shows the flowchart of our 
algorithm. 
 
2.1 Algorithm 
 
1.   Divide the host image into sets o f 8 x 8 blocks. 
Let H be the original host image with size N x N . 
H={h(i,j),0≤i,j<N}, Hm={hm(i,j),0≤i,j<8}, where 
hm(i,j)∈{0,1,2,…,2 L-1}, L is the number of bits used 
to represent gray level of pixels and m is the total 
number of the 8 x 8 block s. 
2.   Divide the watermark image in to sets of 2 * 2 
blocks. Let W be the binary watermark image with 
s ize M x M. W={w(i,j), ,0≤i,j<M},where 
w(i,j)∈{0,1} 
W n={wn(i,j), ,0≤i,j<2}, where n is the total number 
of 2 x 2 b locks. 
3.   Transform  Hm to H m_D CT    b y DCT.  h m_DCT(i,j) 
∈ R 
4.   Insert   W n into the coefficients of  H m_DCT    . 
Hm_F={hm_F(i,j)=hm_DCT ⊕wn(i,j), 0≤i,j<8 }, h m_F(i,j) 
∈ R 
5.  Transform the embedded host image Hm_F , by 
Inverse DCT to obtain Hm_IDCT, hm_IDCT∈ R. 
6. Find the suitable solution to translate all real 
numbers in  Hm_ID CT  into integers, and obtain HEA . 
HEA={ hEA (i,j), ,0≤i,j<8 }, where hEA (i,j)∈{0 ,1 ,2 
,…,2L-1} 
 
3. Overview of Evolutionary Algorithms 

(EA) applied in reducing errors 
 

In the previous section we observed that the data 
embedded in the coefficients of the transformed  
image will be somewhat disturbed  due to deviations 
in converting  real numbers to integers (rounding app 
roach ) in spatial domain . For instance, Figure  2 
shows the extracted  watermark after IDCT 
coefficients  are rounded . Figure 2A is the original 
host image,  an  8  X 8  gray-level  image,  in  the 
spatial domain  and  Figure  2B is  the transformed 
image of Figure 2A by DCT. Figure 2C is a binary 
watermark in which “0” and “1”  represents  the 
embedded  data in  its  location ; the minus  sign  “-“ 
indicates  no change in its position. F ig 2D obtained 
by embedding Figure 2C into Figure 2B based on 
LSB modification. We can find three differences  
when comparing Figures 2B and 2D; for  instance  
(8.646  and  9.646),  (6.199  and  7.199)  and  (-0.765  

 



and  0.235).  After transforming Figure 2D into its 
spatial domain b y IDCT, we obtain Figure. 2E 
where all pixels are real numbers. After translating 
real numbers in to integers by round in g the real 
numbers, we obtain Figure 2F. Figure 2G is the 
transformed  image from Figure. 2F by DCT. We 
obtain the watermark by extracting the b its from the 
same position in which we embedded  the watermark,  
as shown  in Figure. 2H. We can observe from th e 
Figure.2 that the embedded and extracted watermarks 
are no t equal. 
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Figure 2A.  Original Host Image 
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Figure 2B. Transformed image of 2A 
- - 1 1 - - - - 

- 1 - - - - - - 

1 - - - - - - - 

- - - - - - - - 

- - - - - - - - 

- - - - - - - - 

- 
 

- 

- 
 

- 

- 
 

- 

- 
 

- 

- 
 

- 

- 
 

- 

- 
 

- 

- 
 

- 

Figure 2C. Binary Watermark 
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Figure 2D. Transformed Image after embedding 
watermark 
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Figure 2E. Watermarked Image after IDCT 
Transform 
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Figure 2F.  Rounded  Image 
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Figure 2G.  DCT Image of the rounded image2F 
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Figure 2H. extracted watermark 
 
Since we cannot predict what will h app en in the 

frequency domain o f a host image if we change 
some values of pixels in the spatial domain, 
correcting the rounding errors becomes  a difficult 
task . To  reduce  the errors  caused  during 
conversion  from  real numbers obtained  after  
IDCT  to  integers  in  spatial domain, we used  
evolutionary algorithms (EAs), such as Genetic 
algorithms (GA), Differential Evolution (DE) and 
Simplified Threshold Accepting (STA). 
 
3.1 Genetic Algorithms (GA) 
 

Genetic  algorithms  introduced  by  Holland  
(Holland, 1975)  provide  a randomized, parallel, 
and global search  method based on the mechanics 
of natural selection  and natural genetics in order to 
find solutions of problems. GAs are different from 
normal optimization and search procedures in four 
ways (Herrera et al., 1994)  

(1) GAs work with a cod ed parameter set, not the 
parameters themselves, (2) GAs search from 

random selected points, not from a single point (3) 
GAs use objective function information, and 4) GAs 
use probabilistic transition rules, not deterministic 
ones. 

Generally, GAs start with so me randomly 
selected genes in the first generation , called 
population. Each individual in the population 
corresponds to solution in the problem do main and 
is called chromosome. An objective (fitness 
function ) is used to evaluate the quality of each 
chromo some. The chromosomes with high quality 
will survive and form the population of the n ext 
generation. By u sing the reproduction, crossover 
and mutation operations a new generation is 
recombined in order to find the best solution. This 
process will rep eat until a pre-specified condition 
called convergence criterion is satisfied , or a 
constant number of iteration s is reached. Genetic 
algorithms consume more iterations  and time to 
minimize  the rounding errors. So in order to 
reduce the time  and  iterations  we used  Differential  
evolution  (Bh at et al., 2006; Karboga and Okdem, 
2004) and threshold accepting algorithms (Ravi et 
al., 2000a). 
 
3.2 Differential Evolution 
 

The optimization  method used for the solution 
of the inverse problem  in our work, namely, the 
Differential Evolution, is a new generation 
Evolutionary Algorithm (EA) and we employed  an 
improved  version of this method in our work. EA 
derive their name from natural biological 
evolutionary processes, some of which are mimicked 
for obtain in g solution to an optimization problem. 

One can use EA for problems that are difficult 
to solve with traditional optimization techniques, 
including problems that are not well defined  or 
are difficult  to  model mathematically.  A popular 
optimization method,  which  belongs  to  the EA 
class of methods,  is  the  Genetic  Algorithm  (GA).  
In  recent  times,  Genetic  Algorithm  has replaced 
the traditional methods as the preferred optimization 
tool, as several studies have conclusively proved. 
Differential Evolution is relatively a new algorithm. 
Price and Storn (1997) have first proposed it in 
1997. Its popularity has been catching up , of late.  It 
is fast in numerical optimization and is more likely 
to find the true optimum (Karboga and Okdem, 
2004; P rice and Storn, 1997). 
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Figure 3. Flowchart of DE  
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Figure 4. Flowchart of Simplified TA 
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3.2.1 Differential Evolution for unconstrained 
optimization.  

The  method  of  differential  evolution  (Price  and  
Storn,  1997;  Bhat  et  al.,  2006,) consists mainly of 
four step s: Initialization , Mutation, Recombination and 
Selection. In the first step, a random population of 
potential solutions is created within the multi- 
dimensional search space. To start with, we define 
our objective  function f(y) to be optimized , where 
y=(y1, …, yn) is a vector of n decision variables. The 
aim is to find a vector y in the given search space, 
for which the value of the objective function is an 
optimum. The search space is first defined b y 
providing the lower and upper bounds for each o f 
the n decision variables of y, i.e.,  ymin ≤ y ≤ ymax . 
In the initialization step, NP vectors, each o f n 
dimensions, are randomly initialized. The parameters 
are encoded as floating point numbers. 

Mutation  is basically  a search  mechanism, 
which, together with  recombination  and selection, 
directs the search towards potential areas of optimal 
solution. In this step, three distinct target vectors  ya, 
yb and yc  are randomly  chosen  from  the NP parent 
population on the basis of 3 random numbers a, b 
and c. One of the vectors yc  is the base o f the 
mutated vector. To this is add ed the weighted 
difference of the remaining two vectors, i.e. (y a  - y 

b) to generate  a noisy random vector, n i . The 
weighting  is done using a scaling factor F, which is u 
ser-supplied and is usually in the range 0 to 1.2.  
This mutation process is repeated to create a mate for 
each member of the parent population. 

In  the  recombination  (crossover)  operation,   
each   target  vector  of  the  parent population  is 
allowed  to undergo  recombination  by mating with  
a mutated vector. Thus, vector  y i  is recombined  
with the noisy random vector,  ni m

to generate a 

trial vector, t i . Each element o f the trial vector (ti  , 
where i = 1, …., NP and m=1,….,n ), is determined 
b y a binomial experiment whose success or failure 
is determined by the user-supplied  crossover  factor, 
CR. The parameter CR is used to control the rate 
at which the crossover takes place. Trial vector, t i , 
is, thus, the child o f two parent vectors:  noisy 
random vector, n i    and  the  target  vector, y i .  DE  
performs  a non-uniform crossover, that 
determines which  trial vector parameters  are 
inherited  from which parent. 

It is sometimes possible that some particular 
combinations o f three target vectors from the parent 

population  and the scaling  factor F would  result 
in noisy vector values, which are outside the 
bounds set for the decision variables.  It is 
necessary, therefore, to bring such values within 
the bounds. For this reason, the value of each 
element of the  trial vector  is  checked  at the end 
o f the recombination  step. If it violates  the 
bounds, it is heuristically  brought back to lie 
within the bound ed region. It is in the last stage of 
the ‘selection ’, the trial vector is pitted against the 
target vector and the fitness  is  tested  and  fitter  of  
the  two  vectors  survives  and  proceeds  to  the  
next generation. 

After  NP  competitions  of  this  kind  in  each  
generation ,  one  will  have  a  new population,  
which  is  fitter  than  the  population  in  the  
previous  generation.  This evolution  procedure  
consisting  of  the  above  four  steps  is  repeated  
over  several generations until the termination 
condition is reached, i.e. when the objective 
function attains  a prescribed  optimum  o r a 
specified  number o f generations  are completed, 
whichever happens earlier. 
 
3.3 Simplified Threshold Accepting 
 

In the recent literature, global optimization  
techniques such as, Simulated Annealing, Tabu 
Search,  Genetic  Algorithms,  Threshold  
Accepting  are  all  group ed  in  one category and 
called  metaheuristics  (Osman  and Kelly, 1996).  
Threshold  Accepting, proposed  by Dueck  and  
Scheuer  (Du eck  and  Scheuer,  1990),  is  a  variant  
o f the original  simulated  annealing  algorithm  in  
that  the  acceptance  of  a new  move  or solution is 
determined by a deterministic criterion rather than a 
probabilistic criterion. Dueck   and   Scheuer   
(Dueck   and   Scheuer,   1990)   showed   through   
numerical experimentation   that  threshold   
accepting  is  superior  to  simulated  annealing  for 
solving  combinatorial  global  optimization  
problems.  In  this  paper,  the  threshold accepting 
algorithm has been modified and adapted to the 
problem already described in the beginning of this 
section. 

Threshold   Accepting  has  been  used   in  
optimizing   the   fuzzy  rule  base  while 
maximizing  the classification rate in fuzzy rule 
based classifiers  (Ravi et al., 2000, 2001; Ravi and 
Zimmermann, 2000), optimization of complex 
system reliability (Ravi et al., 2000a), in neural-
fuzzy  rule based  classifiers  (Ravi and 
Zimmermann,  2001), train in g o f neural  networks  
for  classification  and  forecasting  problems  (Ravi 
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and Zimmermann ,  2003;  Rav i  et  al.,  2005)  and  
in  designing  new  fuzzy  clustering algorithms  
(Ravi  et  al.,  2006).  Based  on  this  experience  on  
TA,  we  decided  to investigate the effectiveness of 
TA to expedite the watermark retrieval. 
 
4. Methodology of applying EAs to solve 
the problem 
 
4.1 Genetic Algorithms 
 
To  apply  GAs  in  solving  our problem,  a 
chromosome  ‘C’ consisting of  64 genes C=g0 g1 
g2 . . . g63, is considered, where g0, g1, g2, … g63 
correspond to the pixels in 8 * 8 block o f host image 
(Shih and Wu, 2005). Here each g is either 0 or 1. 
The evaluation (objective) function is difference 
between embedded and extracted watermarks. 

Evaluation fn =
0

all pixels
em ex

i

watermark watermark
=

−∑  

Where watermarkem is the embedded watermark and 

watermarkex is the extracted watermark. Our goal is to 
minimize the objective function value. For each sample 
solution obtained b y genetic algorithm we translate real 
numbers(r) into integers(r*) using the following rules: 
(1) If the signal is “1” ,r * = Trunc(r)+1  (2) If the 
signal is  “0”, r* =  Trunc(r) where Trunc(r) is the 
integer p art of r. 
 
Algorithm 
 
1. Define the fitness function, number o f genes, sizes o f 
population, crossover rate, critical value and mutation 
rate. 
2. Initial population is randomly assigned with 0’s and 
1’s. 
3. Evaluate the fitness value for each corresponding 
chromosome. 
4. Reproduction, Crossover and Mutation operators 
(Shih and Wu, 2005) are applied to generate next 
generation of chromosomes 
5. Repeat steps 3-5 until a predefined condition is 
satisfied , or a constant number of iterations is reach 
ed. 
 

4.2 Differentia l Evolution 
 
To apply DE in solving our problem, a vector ‘V’ 
consisting o f 64 parameters V=g0 g1 g2 . . . g63, is 
considered , where g0, g1, g2, … g63 correspond to the 
pixels in 8 * 8 block of host image (Shih and Wu , 

2005). Here each g is a real value between 0 and 1. 
 
Objective (Fitness) Function: 
 
The evaluation (objective) function is difference 
between embedded and extracted watermarks. 

Evaluation fn =
0

all pixels
em ex

i

watermark watermark
=

−∑  

Because DE works with real values, we use 
the following two rules to convert real 
numbers(r) in to integers(r* ) 
(1) If the signal is “ ≥ 0.5” ,r *  =  Trunc(r)+1 
(2) If the signal is  “ < 0.5”, r* =  Trunc(r) 
where Trunc (r) is the integer p art of r.       
 
Algorithm 
 
1.   The first step is the random initialization of 
the parent population. Generate randomly NP 
vectors, each o f n dimensions: 

min (0,1)*( max min )m m m m
iy y rand y y= + −  

where i = 1, 2….., NP and m = 1, 2…., n                  (1) 
2.   Calculate the objective function values f(yi) for 
all yi. 
3.   Select three random numbers (ya, yb, and yc) 
within the range 1 to NP . The weighted difference 
(ya – yb) is used to perturb (yc) to generate a noisy 
vector ni:  

*( )i c a bn y F y y= + −  
where i = 1, 2….., NP                               
(2) 

4. Recombine each target vector yi with the noisy 
random vector ni to generate a trial vector ti: 

(0,1) (1, ); ,m m m m
i i i it n if rand CR or m rand n t y otherwise= < = =

where i = 1, 2….., NP and m = 1, 2…., n                  (3) 
5. Check whether each decision variable of the trail 
vector is with in the bounds. Otherwise force it to lie 
with in the bounds using: 

min 2.0*( / )*( max min ), maxm m m m m m
i it y p q y y if t y= + − >  

 
( max ) ( min )m m m m

i iwith p t y and q t y= − = −                    (4) 
 

min 2.0*( / )*( max min ), minm m m m m m
i it y p q y y if t y= + − <  

( min ) ( max )m m m m
i iwith p y t and q y t= − = −      (5) 

6. Calculate the value o f the objective function for 
the two vectors ti and yi. Fitter of the two (one with 
the lower objective function value) survives and 
proceeds to the next generation. 
7. Check if convergence criterion met. If yes stop; 
otherwise go to step 8. 
8. Check if maximum number of generations have 
been completed. If yes, stop; otherwise go to step 3. 
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The flowchart illustrating the sequence of operations is 
showed in Figure. 3. 
 
4.3.  Simplified Threshold Accepting 
 

While applying the TA algorithm, we realized 
that the en tire TA algorithm need not be employed  
and only some  elements o f it are necessary  to 
solve the problems  at hand. Hence, we devised, 
what we call ‘simplified threshold accepting’ (STA) 
in this paper. The idea o f STA is very simple. Since, 
in this case, the objective function takes only  5  
distinct  integer  values   (0,1,2,3   and   4),  the  
acceptance   scheme  of  the neighborhood  solution s 
is  modified here  and accordingly, by  totally  
removing the concept  of  threshold  parameter  
used  in  traditional  TA.  Further,  the  convergence 
criterion  is tweaked so  that the algorithm stops  
when  the objective  function  value becomes  equal  
to  zero.  These changes in  TA  were  necessitated  
because  o f  the peculiarities of the problem 
explained above. 

To apply STA in solving our problem, a 
vector ‘V’ consisting o f 64 parameters V=g0 g1 
g2 . . . g63, is considered , where g0, g1, g2, … 
g63 correspond to the pixels in 8 * 8 block of 
host image (Shih and Wu , 2005). Here each g is 
a real value between 0 and 1. 
 
Objective (Fitness) Function 
 

The evaluation (objective) function is difference 
between the embedded and extracted watermarks. 
Evaluation fn 

=
0

all pixels
em ex

i

watermark watermark
=

−∑  

Because STA works with real values, we use 
the following two rules to convert real 
numbers(r) in to integers(r* ) 
(1) If the signal is “ ≥ 0.5” ,r *  =  Trunc(r)+1 
(2) If the signal is  “ < 0.5”, r* =  Trunc(r) 
where Trunc(r) is the integer part o f r. 
 
Algorithm 
 
1. Specify the maximum number o f glob al 
iterations, maximum number of inner iterations. 
2. Start the global iteration. 
3. Randomly  generate  the initial vector (old 
vector) following  uniform  random number 
generator between (0,1). 
4. Compute the objective function and store it in fi . 
5. Start the inner iteration. 

6. Generate the candid ate solution vector (new 
vector) in the neighborhood of the o ld solution 
vector according to the scheme given as follows: 

        yc = yo + (2 ∗u −1) p ;i = 1, 2,..., n 
where u is a random number drawn from Uniform 
distribution  in the range (0,1), p is a pre - specified odd 
integer and the superscript c and o respectively indicate 
the candidate solution and the old solution 
7. Compute the objective function value of the 
candidate vector and store it in fj. 
8. If  fi =0  return the o ld vector and stop. 
9. Else, If  fj  =0  update the old vector with new 
vector, fi value is updated with fj value, return the 
old vector and stop. 
10. Else,   If   fj ≤ fi     update the old vector with 
new vector,  fi value is updated with fj value , 
inner iteration  value is incremented  and go to 
step  6 if inner iterations  value  is  less  than  the  
maximum  number  of  inner  iterations,  else 
increment  the  global  iterations   go  to  step  3  
until  global  iterations  value reaches maximum 
number of global iterations. 
11. Else, If  fj >  fi inner iteration value is 
incremented  and go to step 6 if inner iterations  
value   is   less   than   the   maximum   number  
of  inner   iterations otherwise  increment the 
global iterations  go  to step  3 until global 
iterations value reaches maximum number of 
global iterations. 
The Flowchart illustrating the sequence of operations 
is showed in Figure. (4). 

 
 
5. Results & Discussions 
 
We tested the effectiveness of GA, DE and STA 
on a variety of benchmark  images Viz., lena256, 
lena512, baboon512,  Barbara512,  pepper512.  The 
watermark  images used are rose128 and the 
Chinese  character used in (Shih and Wu, 2005). 
GA was implemented using JDEAL 
(http://laseeb.isr.ist.utl.pt/sw/JDEAL ), DE and STA 
were coded in java. The computational experiments 
were conducted on a Pentium IV 1500 MHz system 
with 256MB RAM. For instance, Figure 5 shows 
the extracted watermarks after  applying  
evolutionary  algorithms  to  correct  rounding  
errors.  Figure  5A  is  the original host image, an 8 
X 8 gray-level image, in the spatial domain and 
Figure 5B is the transformed image of Figure 5A by 
DCT. Figure 5C is a binary watermark in which “0” 
and “1”  represents  the embedded  data in  its  
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location ; the minus  sign  “-“ indicates  no change 
in its position. We obtain Figure 5D by embedding 
Figure 5C into Figure 5B based on LSB 
modification. We can find three differences  when 
comparing Figures 5B and 5D; for  instance  (8.646  
and  9.646),  (6.199  and  7.199)  and   
(-0.765  and  0.235).  After transforming Figure 5D 
into its spatial domain b y IDCT, we obtain 
Figure. 5E where all pixels are real numbers. 
Figure 5F is the vector obtained from EAs. After 
translating real numbers into integers by EAs, we 
obtain Figure 5G. Figure 5H is the transformed  
image from Figure. 5G by DCT. Finally we obtain 
the exact embedded watermark by extracting the 
bits from the same position  in which we embedded  
the watermark, as shown in Figure. 5I. 
 

165 163 161 161 162 161 159 158 

164 162 160 160 161 160 159 157 
162 160 158 158 159 159 157 156 

160 158 157 157 158 158 156 155 

158 157 155 156 157 157 156 155 

158 156 155 156 157 158 156 155 

158 156 155 156 158 158 157 156 

158 156 155 156 158 159 158 156 

Figure 5A.  Original Host Image 
 
1264.125 6.729 -0.765 9.158 0.145 0.803 -1.070 1.152 
18.538 

 
8.646 

6.199 
 

-0.175 

0.223 
 

-0.020 

-0.366 
 

0.568 

0.197 
 

0.063 

-0.142 
 

0.156 

-0.184
 

-0.219

0.171 
 

0.438 
1.486 -0.006 -0.233 -0.351 0.328 -0.149 -0.081 -0.248

-1.595 -0.171 -0.163 -0.156 -0.125 -0.100 -0.067 -0.037

1.659 0.248 -0.189 -0.071 0.370 -0.249 0.580 0.106 

-2.106 0.055 0.036 0.288 -0.160 -0.035 0.520 -0.459

1.195 -0.264 0.405 -0.173 0.163 -0.369 -0.439 -0.080

Figure 5B. Transformed image of 3A 
 

- - 1 1 - - - - 

- 1 - - - - - - 

1 - - - - - - - 

- - - - - - - - 

- - - - - - - - 

- - - - - - - - 

- - - - - - - - 

- - - - - - - - 

Figure 5C. Bin ary Watermark 
 
1264.125 6.729 0.235 9.158 0.145 0.803 -1.070 1.152 

18.538 7.199 0.223 -0.366 0.197 -0.412 -0.184 0.171 

9.646 -0.175 -0.020 0.568 0.063 0.156 -0.219 0.438 

1.486 -0.006 -0.233 -0.351 0.329 -0.149 -0.081 -0.247 

-1.595 -0.171 -0.163 -0.156 -0.125 -0.100 -0.067 -0.037 

1.659 0.248 -0.189 -0.072 0.370 -0.249 0.580 0.106 

-2.106 0.055 0.036 0.288 -0.160 -0.035 0.520 -0.459 

1.195 -0.264 0.405 -0.173 0.163 -0.369 -0.439 -0.080 

Figure 5D. Transformed Image after embedding 
watermark 

 
167.137 164.952 162.853 162.500 163.657 162.286 160.959 158.760 

165.569 163.392 161.302 160.964 162.132 160.779 160.456 157.277 

162.788 160.619 158.548 158.235 159.432 159.105 157.800 155.630 

159.845 157.693 156.647 156.367 157.595 157.301 156.018 153.874 

157.691 156.550 154.529 155.287 156.556 156.300 156.043 153.907 

157.163 155.041 154.047 154.835 156.136 156.907 155.679 153.564 

158.246 156.124 155.148 155.963 158.299 158.102 157.889 155.766 

156.629 154.533 153.570 154.394 156.728 157.534 157.338 154.252 

Figure 5E. Watermarked Image after IDCT 
Transform 

 
0 0 1 1 0 1 0 1 

1 0 1 0 1 1 0 0 

0 1 1 1 0 0 1 1 

0 1 0 1 1 1 1 0 

1 0 0 1 0 1 0 1 

1 0 1 1 1 1 0 1 

0 
 

0 

1 
 

0 

1 
 

0 

1 
 

0 

1 
 

1 

0 
 

0 

0 
 

1 

1 
 

0 

Figure 5F EA. vector to reduce rounding errors 
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167 164 163 163 163 163 160 159 

166 163 162 160 163 161 160 157 

162 161 159 159 159 159 158 156 

159 158 156 157 158 158 157 153 

158 156 154 156 156 157 156 154 

158 155 155 155 157 157 155 154 

158 157 156 156 159 158 157 156 

156 154 153 154 157 157 158 154 

Figure 5G. Translation of real numbers in to integers 
by EAs 

 
1264.5 7.456 -1.677 9.992 0.728 1.682 -1.632 2.282 

27.212 7.051 0.063 -0.267 -0.319 0.028 0.630 -0.377

11.283 -0.072 0.193 0.273 0.320 -0.351 0.466 1.255 

4.045 0.753 -0.068 -0.211 1.290 -0.316 1.662 -0.531

-4.946 -1.357 -0.285 0.664 -0.246 1.146 -0.677 -1.130

4.289 0.367 -0.833 -0.731 -0.080 -0.637 0.089 -0.666

-4.507 -0.231 0.227 -0.461 0.137 0.540 0.561 -0.823

3.164 -0.326 0.760 -1.077 0.274 -0.089 -0.155 -1.167

Figure 5H.  Transformed Image of 3G b y DCT 
 

- - 1 1 - - - - 

- 1 - - - - - - 

1 - - - - - - - 

- - - - - - - - 

- - - - - - - - 

- - - - - - - - 

- - - - - - - - 

- - - - - - - - 

Figure 5I. extracted watermark after applying EA 
 

For instance, Figure 6 is the example that shows 
the embedding of watermark into a real image. 
Figure 6A is the origin al host image, the Lena image 

with size 256 x 256. Figure. 6 B is  original  binary  
watermark.   We  embed  Figure  6B  into  the  
coefficients  o f  the transformed  image o f Figure 
6A by DCT. Figure 6C is the rounded  image after 
app lying IDCT. Figure 6D is the extracted 
watermark from Figure 6C. Figure. 6E, 6F, 6G are 
the images after applying GA, DE, STA algorithms 
respectively. Figure. 6H, 6I, 6J are the extracted 
watermarks from 6E, 6F, 6G respectively. 

 
Figure 6A. Original lena 256 x 256 image 

 

 
Figure 6B. origin al binary watermark 

 

 
Figure 6C.  Round ed IDCT image 

 

 
Figure 6D. extracted watermark  from rounded  

IDCT image 
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Figure 6E. GA image 

 

 
Figure 6F. DE image 

 

 
Figure 6G. TA image 

 
 

 
Figure 6H. GA watermark 

 
Figure 6I. DE watermark 

 
Figure 6J. TA watermark 

Table.1  represents  the  comparisons  when  
translating  real  numbers  in  integers  by round  
and  EAs.     The  iteration  values  are  the  average  of 
10 sample  values.  Each algorithm  is  app lied  10  
times  iteratively  and  the  average  of  these  10  
values  are mentioned in the Table 1.  Each time 
STA takes lesser iterations than DE, which in turn 
takes lesser iterations than GA. 
 
The definition of PSNR is 

1020.log IMAXPSNR
MSE

 =  
 

 

Where MAXI   is the maximum pixel value of the 
image. For gray-scale  images this value is 255. 
 
MSE is th e Mean Square Error, it is defined as 
 1 1

2

0 0

1 || ( , ) ( , ) ||
m n

i j

M SE I i j K i j
m n

− −

= =

= −∑ ∑  
 
Where m and n are the width and height of the 
image respectively. “I” is the original host image 
and “K” is the watermarked image. 
 

Table 1. The comparisons when translating real 
numbers in integers by round and EAs 

 By  Ro und By GA By DE By TA 

PSNR 
 

NC 

36.760 
 

0.466 

36.678 
 

0.733 

36.680 
 

0.733 

36.683 
 

0.723 

iterations ------------ 1739 1456 855 
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The error measure NC (Normalized Correlation) is 
defined as follows: 

[ ]
1 1

2

1 1

( , )* ( , )

( , )

N N
f

i j
N N

i j

w i j w i j
NC

w i j

= =

= =

=
∑∑

∑∑
 

 

Where w(i,j) is the origin al watermark  with size  
N * N and wf(i,j) is the extracted watermark. 
 
Table.  2   represents  the  results  obtained  b y 
applying  GA,  DE, STA o n different images. From 
this table it is clearly observed that TA takes lesser 
iterations than DE, which in turn takes lesser 
iterations  than GA. Although there is slight 
reduction  in STA  based  extracted  watermark  NC  
value  it  converges  quickly  to  the  optimal 
solution. The iterations (Iter) value is the average of 
the 10 experiments conducted for each algorithm. In 
each experiment iterations value of STA is lesser 
than DE, which in turn lesser than GA. 
 

Table 2. Comparison o f  GA, DE, TA on different 
images 

Image      GA DE TA 

 P SNR NC Iter PSNR NC Iter PSNR NC Iter 

Lena 

256x256 

36.67
8 

0.73
3 

1739 36.680 0.733 1456 36.683 0.723 855 

Baboon 

512x512 

31.94
4 

0.72
8 

7602 31.946 0.728 6566 31.944 0.721 3866 

Barbara 

512x512 

37.07
8 

0.74
5 

9751 37.079 0.745 8628 37.077 0.728 5695 

Lena  

512 x 512 

38.12
3 

0.72
2 

10726 38.123 0.722 9614 38.188 0.703 6113 

Pepper 

512 x 512 

34.04
8 

0.74
2 

11739 34.048 0.742 10063 34.042 0.726 5358 

 
For instance, Figure. 7 shows the experiments 

conducted on a baboon 512 x 512 image. Figure 
7A is the original host image, baboon 512 x 512. F 
ig 7B is a binary watermark. Figure  7C, 7D  are  
the rounded  IDCT  image  and  corresponding  
extracted  watermark respectively.  Figure 7E, 7F , 
7G are the GA, DE and STA based watermarked  
images respectively.  Figure 7H, 7I, 7J are the 
GA, DE and  STA based extracted  watermarks 
respectively. 
 
 

 

 
Figure 7A. Original b aboon 512x512 image 

128x128 binary 

 
Figure 7B. Original Watermark 

 

 
F igure 7C. Round ed baboon 
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Figure 7D. extracted watermark f rom 9C 

 
Figure 7E. Watermarked image after applyin g GA 

 
Figure 7H. extracted watermark From 9E 
 

 
Figure 7F. Watermarked image after applying DE 

 
F igure 7I. extracted watermark fro m 9F 

 
 
 
 

 

 
Figure 7G. Watermark ed image after app lyin g TA 

 

 
Figure 7H. extracted watermark from 9G 

 
6. Conclusions 
 
In this paper, we present the progression of 
correcting rounding errors based on EAs. The main 
issue here is the embedded data should be extracted 
correctly. To enhance the watermark retrieval we 
applied GA, DE and STA algorithms on the 
watermarked image. Our STA algorithm converges 
quicker to the optimal solution than DE, which 
inturn  converges quicker than GA. We 
implemented the GA algorithm (Shih and Wu, 
2005) and compared  the results  with  DE and  
STA. We can observe from the previous section 
that STA takes half of the iterations consumed by 
GA algorithm. We can also observe that in all 
benchmark images DE consumes lesser iterations 
than GA. The extracted watermarks in the previous 
section shows that they are of high quality than 
those in (Shih and Wu, 2005). 
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