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Abstract: Nutrient deficiency is one of the main causes of the 

decline in oil palm production. In fact, oil palm farmers cannot 

diagnose the symptoms of the nutrient deficiency by themselves. 

Generally, the collected leaf samples need to be analyzed using 

laboratory equipment which consumes time and budget. In this 

research, the leaf samples including fronds 17 and 25 were 

collected from 37 oil palm trees. Frond 17 was used to analyze 

the amounts of Nitrogen (N), Phosphorus (P), Potassium (K), 

Magnesium (Mg), and Boron (B). Based on biochemical tests on 

palm leaves collected, the relationship between oil palm leaf 

characteristics and its amounts of nutrients was studied. Deep 

learning models were developed using Convolutional Neural 

Networks (CNN) to diagnose nutrient deficiency in oil palm from 

the leaves’ images. The nutrient results were classified into 3 

groups: deficiency, normal, and excess. Totally, 682 images from 

frond 25 from trees across a farm were used for image data 

collection. Various CNN benchmark architectures were used to 

analyze the performance of nutrient deficiency classification but 

the separable convolutional CSBio2020 and BettaNet 

architectures were found to be ideal enough for the set of data 

collected. Separate models were trained to predict the levels of 

each nutrient. The models’ average accuracy is 77.2% for 

CSBio2020 and 80.4% for BettaNet. The average precision, 

recall, and F1 score are 0.75, 0.75, and 0.747, respectively, for 

CSBio2020 and 0.76, 0.813, and 0.775, respectively, for BettaNet. 

Many studies in the area dealt with few nutrients but this paper 

has all the nutrients analyzed and a deep learning architecture 

with parameters optimized to fit all in one with more optimal 

performance when compared to other existing methodologies. 
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I. Introduction 

Oil palm (Elaeis guineensis Jacq.) is the main source of 

vegetable oil used worldwide for domestic, commercial food, 

and cosmetic industries. Oil palm is a monocotyledon in the 

family Arecaceae. It has pinnately compound leaves 

consisting of 2 parts, rachis with 250-300 leaflets attached on 

it and petioles that attached to the trunk. Its fruit is drupe 

composed of pericarp and seed. Pericarp can be separated into 

3 layers orderly from outside, exocarp, mesocarp, and 

endocarp. The two latter layers are used to produce palm oil 

and palm kernel oil respectively. 

 Nutrients play an important role in the growth of oil palm. 

Lack of nutrients can affect oil palm growth and reduce oil 

palm product yield. When some nutrients are deficient, oil 

palms usually show characteristics on their leaves. 

Deficiencies in the five main nutrients of oil palm; nitrogen 

(N), phosphorus (P), potassium (K), magnesium (Mg), and 

boron (B), which are focused on in this paper show 

characteristics on leaves summarized in Table 1. 

 

References Nutrient 

deficiency 
Characteristics 

[1][2][3] Nitrogen pale green, yellow color 

leaf 
Potassium yellow, orange spot on leaf 

Magnesium bright orange color leaf 

Boron wrinkled, hooked leaf 

[2][3] Phosphorus short, narrow, and conical 

shape trunk, dark green leaf 
Table 1. Characteristics of oil palm’s Nitrogen, Phosphorus, 

Potassium, Magnesium, and Boron deficiency. 

 

Deep learning algorithms using convolutional neural 

networks can identify nutrient diseases in plants with high 

accuracy. For studies on oil palm, researchers use several 

techniques to classify oil palm’s nutrient deficiencies based on 

leaves images such as using near-infrared reflectance 

spectroscopy to classify oil palm’s nutrient diseases. Support 

Vector Machine (SVM) technique, Artificial neural network, 

and fuzzy interference system were also utilized. A brief 

review of the approaches is presented in Table 2. 

 

Refer

ences 
Method Crops Deficiency Accur

acy 

(%) 
[4] Artificial 

neural 

network 

Oil 

palm 
N, K, Mg 86.11 

[5] Support vector 

machine 
Oil 

palm 
N, P, Mg 95.00 

mailto:,
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[6] Fuzzy 

inference 

system 

Oil 

palm 
N, K, Mg 82.67 

[7] Convolutional 

neural 

network 

(VGG) 

25 plant 

species 
58 distinct 

classes of 

[plant, 

disease] 

99.53 

[8] near-infrared 

reflectance 

spectroscopy 

Oil 

palm 
N, P, K  NA 

[9] Deep network 

with auto 

encoders 

Maize N, P, K 100 

[10] Convolutional 

neural 

network 

14 crop 

species 
26 diseases 99.35 

[11] Convolutional 

neural 

network 

Tomato N, K, Ca 87.27 

[12] Convolutional 

neural 

network 

Okra  NA 86.00 

Table 2. Overview of machine learning techniques for 

nutrients disease classification. 

 

 There are many other deep learning methodologies 

proposed for animals [27] and insects [28] as well. The 

conventional way of nutrient analysis in oil palm is done by 

analyzing the leaves. Leaves samples are normally collected 

from frond 17. The number order of oil palm fronds can be 

counted from the first fully opened frond at the center of the 

tree as frond 1. Number order of fronds located in a straight 

line under frond 1 is added by 8 per layer as shown in Figure 

1. Collected leaf samples were analyzed by 2 techniques, 

inductively coupled plasma atomic emission spectroscopy 

(ICP-OES) [13] and the Kjeldahl method [14]. The principle 

of ICP-OES is to quantify each element in a sample using the 

wavelengths emitted by the heated atoms to the excited state. 

This technique can be used to determine the amount of P, K, 

Mg, and B. The second technique, the Kjeldahl method, was 

used to measure nitrogen content. It consists of 3 main steps, 

digestion, distillation, and titration. These techniques have to 

be done in the laboratory, which is expensive and time-

consuming for oil palm farmers. Therefore, this paper uses 

deep learning to identify five nutritional deficiencies (N, P, K, 

Mg, and B) from oil palm leaf images by implementing the 

proposed architecture. Frond number 17 is a standard level for 

oil palm nutrient analysis. Samples collected from this method 

is subjected to analysis using Kjeldahl method. Frond number 

25 is a standard level which normally exhibits nutrient 

deficiency which can be identified by observation by experts 

and experienced farmers. So, the samples from this frond are 

used to classify using deep learning. 

 

 
Figure 1. Number of oil palm fronds, as marked in the photo 

are frond 1, 9, 17, and 25. 

 Convolutional Neural Networks are a type of artificial 

neural networks with fixed or customized set of hidden layers 

mostly used for problems associated with Computer Vision. 

There are many pretrained convolutional neural networks 

ranging from LeNet [18], the first ever CNN developed. Other 

architectures include AlexNet [19], Efficient Net, NasNet, 

DenseNet, MobileNet,VGG 16 and 19 etc. The architectures 

of CSBio 2020 [16] and BettaNet [17] are used in the 

experiments listed in this paper. The architectures of CSBio in 

Figure 2 and BettaNet given in Figure 3.  

 
 

 

 

 

 

 

 

 

 

 

Figure 2. CSBio 2020 architecture 

 

According to the CSBio 2020 architecture presented, 

Depthwise separable convolutional layers are given in orange, 

Maxpooling layers are given in blue, Flatten layer is given in 

yellow and dense layers for the fully connected neural network 

are given in green. This is a transformed version of VGG 

architecture used in [16] for performance evaluation. This 

architecture replaces the normal convolutional 2D layer to 

depthwise separable convolutional layers. 

 

 
 

Figure 3. BettaNet architecture 

 

 BettaNet architecture is a modified version of ResNet 50. 

The experimentations in this paper involved BettaNet with 

ResNet 50 but the convolutional 2D layers totally rewired as 

per BettaNet. The remaining part of the paper is organized as 

follows: Methodology for experimentation is described in 

section II, Results in section III, Discussion in section IV and 

concluded in section V. 
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II. Methodology  

A. Data collection 

1)  Leaf Sample Collection 

All leaf samples in this research were collected from the 

Suksomboon palm oil industry, Chonburi, Thailand. Firstly, 

leaflets from fronds 25 were collected from distinct 37 oil 

palm trees for image acquisition. Then, from the tree of which 

frond 25's leaflets were collected, approximately 20 leaflets 

from frond 17 were collected for the nutrient content analysis. 

According to international standards, leaflets from frond 17 

were used for nutrient content analysis. For image acquisition, 

frond 25 is chosen for the reason that its leaflets apparently 

show more characteristics of nutrient deficiencies than frond 

17’s. 

2) Image Acquisition 

The leaflets from frond 25 had been placed on white 

background and images were taken by a digital camera 

(Panasonic, Lumix). In total, 682 photos were taken. Some 

examples of collected photos are shown in Figure 4. The 

images are captured using a controlled environment with a 

constant lighting exposure on all the samples collected. For 

any dataset, change in lighting impacts the accuracy though 

there are methodologies dealing with lighting invariant 

methodologies. The methodologies reported had not reported 

a significant change when tested with a random initial 

experimentation. 

 

 
Figure 4. Examples of collected images of deficiency leaves, 

(a) B deficiency, (b) K deficiency, (c) Mg deficiency, (d) N 

deficiency, and (e) P deficiency. 

 

3) Nutrient Analysis  

 The collected leaves samples from frond 17 had been 

cleaned, ground, filtered to get fine powders, and kept in 

desiccator. The samples were then used to analyze the amount 

of P, K, Mg, and B using ICP-OES, and to analyze the amount 

of N using Kjeldahl method. 0.2500±0.0002 grams of sample 

were weighed for ICP-OES technique and 0.1000±0.0002 

grams were used for Kjeldahl method. 

 

B. Program Development 

 Convolutional neural network architectures were used in 

deep learning-based classification. During the image selection 

step, the nutrient deficiency oil palm leaf without fungal, 

bacterial, or other disease characteristics were used to avoid 

distractions. The images of the different levels of each nutrient, 

N, P, K, Mg, and B, were divided into 3 groups. The deficient, 

optimum, and excess nutrients were classified based on the 

reference values shown in Table 3. 

Five models of each architecture were constructed to 

predict the level of N, P, K, Mg, and B. Architectures of 

CSBio2020 [16] and BettaNet [17] were utilized. The 

program was written in Python using TensorFlow and Keras.

 

Oil palm’s age Nutrient Deficient Optimum Excess 
Less than 6 

years 
Nitrogen (wt%) < 2.50 2.60-2.90 > 3.10 
Phosphorus (wt%) < 0.15 0.16-0.19 > 0.25 

Potassium (wt%) < 1.00 1.10-1.30 > 1.80 
Magnesium (wt%) < 0.20 0.30-0.45 > 0.70 
Boron (mg/kg) < 8 15-25 > 40 

6 years or more Nitrogen (wt%) < 2.30 2.40-2.80 > 3.00 
Phosphorus (wt%) < 0.14 0.15-0.18 > 0.25 
Potassium (wt%) < 0.75 0.90-1.20 > 1.60 
Magnesium (wt%) < 0.20 0.25-0.35 > 0.60 

 Boron (mg/kg) < 8 15-25 > 40 

Table 3. Macronutrient analysis values of oil palm leaves at the deficient, optimum, and excess level of nutrients [15] 

 

Then, the images were resized to 224x224 and rescaled by 

dividing by 255. After that, they were split into training and 

testing sets by using 90%-10% rule. For the training set, data 

augmentation was done by shearing, zooming, and flipping. 

The model was trained with the preprocessed training set of 

100 and 200 epochs for CSBio2020 and 500 epochs for 

BettaNet. Testing set was used to evaluate the model to 

calculate Accuracy, Cross-entropy loss, Precision, Recall and 

F1 score of the models. 

 

III. RESULTS 
 The results of the experiment were divided into two parts: 

nutrient content with quantitative analysis and performance 

evaluation of deep learning architectures. 

A. Nutrient content analysis 

The amounts of nutrients were classified into 3 groups of 

nutrients: deficient, optimum, and excess nutrients by 

referring to Table 3. From the 37 oil palm samples, 17, 0, 13, 

3 and 3 trees were deficient in N, P, K, Mg, and B, respectively. 

19, 9, 17, 17, and 11 trees contain optimum amounts of N, P, 

K, Mg, and B, respectively. And 1, 28, 7, 17, and 23 trees 

contained excess amounts of N, P, K, Mg, and B, respectively, 

as shown in Table 4. 
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Nutrient 
Number of trees  

Deficient Optimum Excess  

N 17 19 1  

P 0 9 28  

K 13 17 7  

Mg 3 17 17  

B 3 11 23  

Table 4. The number of oil palm trees with deficient, 

optimum, and excess content levels of N, P, K, Mg, and B. 

 From the results of nutrient analysis, histograms for the 

distribution of nutrient content are shown in Figure 5. 

Histograms of N and K are similar to normal distribution 

while those of P, B, and Mg are more right skewed.  

  

Correlation analysis between various nutrient content results 

in Table 5. It can be seen that P and K had negative correlation 

with each other while other pairs of nutrients showed positive 

correlation. 

 

  N P K Mg B 
N 1 0.079784 0.112664 0.058397 0.295396 
P   1 -0.15459 0.091907 0.375829 
K     1 0.066243 0.033622 

Mg       1 0.31316 
B 

    
1 

Table 5. Correlation coefficient Analysis among N, P, K, 

Mg, and B 

 

The statistical results of nutrient analysis are shown in table 

6. Amounts of N ranged between 1.82-2.99 wt% and the mean 

was at 2.38wt%. Amounts of P ranged between 0.15-0.49 wt% 

and the mean was at 0.25 wt%. Amounts of K ranged between 

0.63-1.35 wt% and the mean was at 0.10 wt%. Amounts of 

Mg ranged between 0.57-0.21 wt% and the mean was at 0.35 

wt%. Amounts of B ranged between 9.73-72.56 mg/kg and the 

mean was at 30.34 mg/kg. Values of S.D. and variances of the 

5 nutrients can be ranked from high to low as B, N, K, P, and 

Mg respectively. 

 

B. Performance Evaluation of CNN 

 Table 7 presents previous architectures' testing accuracies, 

including LeNet, AlexNet, VGG 16, VGG 19, Efficient Net, 

and ResNet at 100 and 200 epochs. With 200 epochs, Lenet 

had the lowest testing accuracy of 23.33% and Efficient Net 

B7 had the highest testing accuracy of 69.77%. However, 

these architectures still had significantly lower testing 

accuracy than CSBio2020 and BettaNet which are shown in 

Table 8 and 9. All these experiments were conducted using the 

setup recommended by [26]. NVIDIA RTX 2060 8GB GPU 

with 16 GB RAM were used with Intel Core i5 processor. The 

experiments carried out in Table 7 and 8 is supported with a 

validation accuracy a factor of 5-fold cross validation by 

which the dataset is randomly labelled with sample number 

and divided into five blocks. Each block is tested against the 

training of remaining blocks. The testing performance 

obtained is taken a mean of all the folds in the cross validation 

and reported from Table 7 onwards.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Histograms showing distribution in 

nutrient amounts contained in collected samples, (a)-

(e) are N, P, K, Mg, and B, respectively. 
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Statistical 

values 
N 

(wt%) 

P 

(wt%) 
K 

(wt%) 
Mg 

(wt%) 
B 

(mg/kg) 
Mean 2.38 0.25  0.99 0.35 30.34 

Median 2.45 0.24 

  
0.96 0.35 26.40 

S.D. 0.26  0.09  0.20 0.08 14.09 

Variance 0.07  0.01  0.04 0.001 198.38 

Maximum 2.99  0.49  1.35 0.57 72.56 

Minimum 1.82 0.15 0.63 0.21 9.73 

Table 6. Statistical values from nutrient analysis results: mean, median, S.D., variance, maximum and minimum. 

C.  

 

 

As shown in Table 8, Table 9, and Figure 4 through 6, the 

training accuracy of CSBio2020 at 100 and 200 epochs ranged 

from 95.28-98.21% and 99.19-99.67%, respectively. BettaNet 

at 500 epochs had training accuracy ranging from 90.76-100%. 

CSBio2020 had lower training accuracy than the training 

accuracy of BettaNet at 500 epochs for P, K, and B. However, 

CSBio2020 at 200 epochs had slightly better performance 

than BettaNet for N. Both CSBio2020 at 100 and 200 epochs 

also had higher accuracy than BettaNet for Mg. Cross-entropy 

loss values of CSBio2020 at 100 and 200 epochs, and 

BettaNet at 500 epochs ranged between 0.05-0.11, 0.006-

0.028, and 0.001-0.229, respectively. CSBio2020 had 

averagely higher cross-entropy loss values than BettaNet, 

except for Mg which of BettaNet was significantly the highest.  

 

The testing accuracy of CSBio2020 at 100 and 200 epochs, 

and BettaNet at 500 epochs were in the range of 64-88%, 70-

85%, and 71-85%, respectively. For testing accuracy, 

BettaNet had better performance than CSBio2020 in all 

nutrients except P. It can also be seen from CSBio2020 that 

training accuracies of all 5 models increased significantly 

from 100 to 200 epochs while testing accuracies of all models 

except P model increased slightly. The CSBio 2020 

architecture was set up with a default learning rate, batch size 

of 50 and Leaky Relu was used. In the actual version of CSBio 

2020 normal Relu was used. In the initial experimentation 

Leaky Relu activation was found to be better than Relu in this 

dataset. 

 

 
 

 In BettaNet architecture, the 50-layer version was used 

instead of the 152 layered original version. Batch size was 

defined as 50 to get uniform configuration as CSBio. The 

original version’s batch size was 25. Learning rate was set to 

default and Relu was used as the activation function.

 

 

S.No  Architecture (Reference) Testing Accuracy with 100 

epochs of training (%) 
Testing Accuracy with 200 

epochs of training (%) 
1 LeNet [18]  26 23 
2 AlexNet [19] 37 33 
3 VGG 16 [20] 40 45 
4 VGG 19 [21] 39 41 

5 VGG 19 with separable convolution 

[21] 
56 65 

6 Efficient Net B7 [22] 69 70 
7 ResNet 152 [23] 45 49 

Table 7. Preliminary testing of CNN architectures reporting average accuracy 

Architecture BettaNet (500 epochs) 
Nutrient N P K Mg B 

Training accuracy (%)  98.86 99.67 99.51 90.76 100 

Architecture 
Separable Convolution CSBio2020 

Nutrient N P K Mg B 
Epochs 100 200 100 200 100 200 100 200 100 200 
Training accuracy (%) 97.88 99.67 97.4 99.51 95.28 99.19 96.76 99.35 98.21 99.35 
Cross-entropy loss 0.0514 0.0063 0.052 0.0078 0.1122 0.0283 0.0831 0.0221 0.0671 0.0232 
Testing accuracy (%) 74 75 88 84 64 72 69 70 68 85 

Table 8. Training accuracy, cross-entropy loss, and testing accuracy of accuracy of CSBio2020 at 100 and 200 epochs 
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Figure 6. Training accuracy of models CSBio2020 at 100 

and 200 epochs and BettaNet at 500 epochs 

 
Figure 7. Cross-entropy loss of models CSBio2020 at 100 

and 200 epochs and BettaNet at 500 epochs 

 
Figure 8. Testing accuracy of models CSBio2020 at 100 and 

200 epochs and BettaNet at 500 epochs 

 

Confusion matrices of CSBio2020 are shown in Figures 9. 

From the confusion matrices, precision, recall and F1 score of 

CSBio2020 and BettaNet can be calculated by these formulas 

[24]. 

 

 Precision  =     
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (1) 

 Recall          =      
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (2) 

 

 F1 score  =   2 ×
Precision×Recall

Precision+Recall
    (3) 

From the calculations, precision, recall, and F1 score of 

CSBio2020 are demonstrated in Table 10 through 12. The 

average precision values of N, P, K, Mg, and B models were 

0.73, 0.78, 0.68, 0.78 and 0.78, respectively. The average 

recall values of N, P, K, Mg, and B models were 0.72, 0.81, 

0.67, 0.72 and 0.82, respectively. The average F1 score of N, 

Cross-entropy loss  0.034 0.0137 0.0054 0.2288 0.000721 
Testing accuracy (%) 83 79 85 71 84 

Table 9. Training accuracy, cross-entropy loss, and testing accuracy of BettaNet at 500 epochs 

 

 

 

 

 
Figure 9. Confusion matrices of CSBio2020, (a) N 

model, (b) P model, (c) K model, (d) Mg model, and (e) 

B model. 
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P, K, Mg, and B models were 0.72, 0.80, 0.67, 0.75 and 0.79 

respectively. The data are shown in Tables 11 through 13. 

 

 It can be seen that prediction for excess K was the least 

accurate among other nutrients, noted by the smallest 

precision, recall, and F1 score which made the overall average 

F1 score of K model become the smallest, consequently. The 

P model with only 2 predictable classes showed the greatest 

average F1 score. N, Mg, and B models had the best 

performance for optimum, deficient, and excess classes, 

respectively noted by the highest F1 scores in each class. 

 
 N P K Mg B 
Deficient 0.79 - 0.83 1 0.6 
Optimum 0.73 0.65 0.74 0.7 0.81 
Excess 0.67 0.91 0.46 0.65 0.93 
Average 0.73 0.78 0.676667 0.783333 0.78 
Table 10. CSBio2020 precision in each class for 5 nutrients 

  
N P K Mg B 

Deficient 0.66 - 0.79 0.8 0.86 
Optimum 0.83 0.76 0.74 0.63 0.68 
Excess 0.67 0.86 0.50 0.73 0.93 
Average 0.72 0.81 0.68 0.72 0.82 

Table 11. CSBio2020 recall in each class for 5 nutrients 

 
 N P K Mg B 
Deficient 0.72 - 0.81 0.89 0.7 
Optimum 0.78 0.7 0.74 0.67 0.74 
Excess 0.67 0.89 0.48 0.69 0.93 
Average 0.723

333 
0.795 0.6766

67 
0.75 0.79 

Table 12. CSBio2020 F1 score in each class for 5 nutrients 

 

 As shown in Table 13 through 15, BettaNet’s precision 

values for N, P, K, Mg, and B models were 0.73, 0.81, 0.79, 

0.66, and 0.81, respectively. The average recall values of N, P, 

K, Mg, and B models were 0.78, 0.88, 0.8, 0.79, and 0.81 

respectively. The average F1 score of N, P, K, Mg, and B 

models were 0.75, 0.825, 0.80, 0.70, and 0.81 respectively. P, 

with only 2 classes, has the highest average precision, recall, 

and F1 score, followed by B, K, and N, while Mg is the lowest 

in all three values. 

 
 N P K Mg B 
Deficient 0.80 - 0.80 0.50 0.75 
Optimum 0.75 0.98 0.77 0.72 0.86 
Excess 0.65 0.64 0.79 0.77 0.81 
Average 0.73 0.81 0.78 0.66 0.81 
Table 13. BettaNet precision in each class for 5 nutrients 

 

 

 

  
N P K Mg B 

Deficient 0.75 - 0.83 1.00 0.86 
Optimum 0.83 0.82 0.83 0.70 0.90 
Excess 0.78 0.94 0.74 0.67 0.68 
Average 0.78 0.88 0.8 0.79 0.81 

Table 14. BettaNet recall in each class for 5 nutrients 

 

Table 15. BettaNet F1 score in each class for 5 nutrients  
N P K Mg B 

Deficient 0.80 - 0.82 0.67 0.80 
Optimum 0.75 0.89 0.80 0.71 0.88 
Excess 0.70 0.76 0.77 0.71 0.74 
Average 0.75 0.82 0.79 0.69 0.80 
Table 15. BettaNet F1 score in each class for 5 nutrients 

IV. Discussion 

From the results of nutrient analysis, oil palm trees lacking 

P were not found. Among collected samples, there are only 

trees with optimum and excess P. Therefore, it is not possible 

to create a complete dataset for P. The correlation analysis 

showed that the correlation coefficient between P and K was 

negative. This means that these two elements have an inverse 

relationship. While the correlation coefficients between other 

pairs of elements are positive, meaning that there is a direct 

relationship between them. According to the Confusion 

matrices, it was found that the models were not able to 

distinguish leaves with optimum and excess nutrients from 

each other very well. However, the study has not yet found 

any data to determine the physical differences between palm 

leaves with optimum and excess nutrients. The effects of over-

nutrient in oil palm have not been studied, but in other plants, 

studies have shown that excess nutrients are toxic to plants and 

decrease yields [25]. From the results, the final testing 

accuracies from the proposed neural network architectures 

including CSBio2020 and BettaNet were between 70-85% 

which is remarkably higher than the pre-existing architectures. 

So far no transfer learning is used in the case of CSBio and 

BettaNet as the dataset is unique and cannot be normalized 

with the performance reported by transfer learning. These 

accuracies are expected to be increased by expanding the data 

size, collecting samples from multiple areas, and 

experimenting with more architectures in order to extend the 

program into a real practical application. The scope of this 

application leads to creation of mobile application using 

Tensorflow.js, IoT based application deployed in NVIDIA 

Jetson Nano and integration of deep learning-based 

computing in Platform for AI available in Alibaba Cloud. 

V. Conclusion 

 The data including images and analysis of the nutrient 

content of oil palms were collected to construct a dataset. 

Deep learning models with convolutional neural networks 

were used to classify the images into 3 groups: deficient, 

optimum, and excess nutrients. The capabilities of all 5 

models for each architecture were measured from testing 

accuracy, precision, recall and F1 score, with all 5 models 

having an average testing accuracy of 77.2% for CSBio2020 

and 80.4% for BettaNet. The average precision, recall, and F1 

score are 0.75, 0.75, and 0.747, respectively, for CSBio2020 

and 0.76, 0.813, and 0.775, respectively, for BettaNet. 

Acknowledgment 
 

The authors would like to acknowledge the Suksomboon 

group for the support of equipment and location and the 

Young Scientist Competition (YSC) for the research funding 

(YSC research code: 23YTBIC00586). 



Srisook et al. 26 

References  

[1]  C. Pornsuriya, A. Sunpapao, N. Srihanant, K. 

Worapattamasri, J. Kittimorakul, S. Phithakkit, and V. 

Petcharat. “A survey of diseases and disorders in oil 

palms of southern Thailand”, Plant Pathology Journal 

(Faisalabad), 12(4), pp. 169-175, 2013. 

[2] T. T. Tiemann, C. R. Donough, Y. L. Lim, R. Härdter, R. 

Norton, H. H. Tao, R. Jaramillo, T. Satyanarayana, S. 

Zingore and T. Oberthür. “Feeding the palm: a review of 

oil palm nutrition”, Advances in Agronomy, 152, pp. 

149-243, 2018. 

[3] H. R. Von Uexküll, and T. H. Fairhurst. “Some nutritional 

disorders in oil palm”, Better Crops International, 13(1), 

pp. 17, 1999. 

[4] H. M. Asraf, M. T. Nooritawati, and M. S. Rizam.  “A 

comparative study in kernel-based support vector 

machine of oil palm leaves nutrient disease”, Procedia 

Engineering, 41, pp. 1353-1359, 2012. 

[5] H. M. Asraf, N. Tahir, S. S. Rizam, and R. Abdullah, 

“Elaeis guineensis nutritional lacking identification 

based on statistical analysis and artificial neural 

network”, Recent Advances in Systems Science and 

Mathematical Modelling, pp. 144-149, 2012. 

[6] M. H. Asraf, N. K. Dalila, A. Z. Faiz, S. N. Aminah, and 

M. T. Nooritawati. “A fuzzy inference system for 

diagnosing oil palm nutritional deficiency symptoms”, 

ARPN Journal of Engineering and Applied Sciences, 

12(10), pp. 3244-3250, 2017. 

[7] K. P. Ferentinos. “Deep learning models for plant disease 

detection and diagnosis”, Computers and Electronics in 

Agriculture, 145, pp. 311-318, 2018. 

[8] H. A. J. Jayaselan, N. M. Nawi, W. I. W. Ismail, A. R. M. 

Shariff, V. J. Rajah, and X. Arulandoo. “Application of 

spectroscopy for nutrient prediction of oil palm”, 

Journal of Experimental Agriculture International, pp. 

1-9, 2017. 

[9] N. Leena, and K. K. Saju. “Classification of 

macronutrient deficiencies in maize plant using machine 

learning”, International Journal of Electrical and 

Computer Engineering (IJECE), 8(6), pp. 4197-4203, 

2018. 

[10] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using 

deep learning for image-based plant disease detection”, 

Frontiers in plant science, 7, pp. 1419, 2016. 

[11] T. T. Tran, J. W. Choi, T. T. H. Le, and J. W. Kim. “A 

comparative study of deep CNN in forecasting and 

classifying the macronutrient deficiencies on 

development of tomato plant”, Applied Sciences, 9(8), 

pp. 1601, 2019. 

[12] L. A. Wulandhari, A. A. S. Gunawan, A. Qurania, P. 

Harsani, T. F. Tarawan, and R. F. Hermawan. “Plant 

nutrient deficiency detection using deep convolutional 

neural network”, ICIC Express Letters, 13(10), pp. 971-

977, 2019. 

[13] J. W. Olesik. “Elemental analysis using ICP-OES and 

ICP/MS”, Analytical Chemistry, 63(1), pp. 12A-21A, 

1991. 

[14] R. B. Bradstreet. “Kjeldahl method for organic nitrogen”, 

Analytical Chemistry, 26(1), pp. 185-187, 1954. 

[15] T. Jantaraniyom. Handbook of Palm (Farmer's Edition), 

Suksomboon Palm Oil Co., Ltd, 2012. 

[16] S. Bhoumik, S. Chatterjee, A. Sarkar, A. Kumar, and F. J. 

John Joseph. “Covid 19 Prediction from X Ray Images 

Using Fully Connected Convolutional Neural Network”. 

In CSBio'20: Proceedings of the Eleventh International 

Conference on Computational Systems-Biology and 

Bioinformatics, pp. 106-107, 2020. 

[17] V. Pattana-Anake, P. Danphitsanuparn, and F. J. J. Joseph. 

“BettaNet: A Deep Learning Architecture for 

Classification of Wild Siamese Betta Species”. In IOP 

Conference Series: Materials Science and Engineering, 

(vol. 1055, no. 1, p. 012104). IOP Publishing, 2021. 

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 

“Gradient-based learning applied to document 

recognition[J]”, Proceedings of the IEEE, 86(11), pp. 

2278-2324, 1998. 

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet 

Classification with Deep Convolutional Neural 

Networks[J]”, Advances in Neural Information 

Processing Systems, 25, pp. 1097-1105, 2012. 

[20] K. Simonyan and A. Zisserman. “Very deep 

convolutional networks for large-scale image 

recognition”. In Int. Conf. on Learning Representations, 

2015.  

[21] K. Simonyan and A. Zisserman, “Very deep 

convolutional networks for large-scale image 

recognition”, arXiv preprint, 2014. 

[22] M. Tan, and Q. Le. “Efficientnet: Rethinking model 

scaling for convolutional neural networks”. In 

International Conference on Machine Learning, pp. 

6105-6114, PMLR, 2019. 

[23] Y. Bengio. “Deep learning of representations: Looking 

forward”. In International Conference on Statistical 

Language and Speech Processing, pp. 1-37, 2013. 

[24] C. Goutte, and E. Gaussier. “A probabilistic interpretation 

of precision, recall and F-score, with implication for 

evaluation”. In European conference on information 

retrieval, pp. 345-359, Springer, Berlin, Heidelberg, 

2005. 

[25] A. McCauley, C. Jones, and J. Jacobsen. “Plant nutrient 

functions and deficiency and toxicity symptoms”, 

Nutrient management module, 9, 1-16, 2009. 

[26] F.J.J. Joseph, S. Nonsiri, and A. Monsakul. Keras and 

TensorFlow: A Hands-On Experience. In Advanced 

Deep Learning for Engineers and Scientists (pp. 85-111). 

Springer, Cham. 2021. 
[27] Saitoh, Takeshi, Toshiki Shibata, and Tsubasa Miyazono. 

"Feature points based fish image recognition." 

International Journal of Computer Information Systems 

and Industrial Management Applications 8 (2016): 12-

22. 
[28] Braga, Diogo, and Ana Madureira. "Towards a Decision 

Support System for the Automatic Detection of Asian 

Hornets and Removal Planning." International Journal 

of Computer Information Systems and Industrial 

Management Applications 12.8 (2020). 

Author Biographies 

 

Nipitpon Srisook is currently a student in grade 

12 at Kamnoetvidya Science Academy (KVIS), 
Rayong, Thailand. With interests in biology and 

artificial intelligence, he is conducting this 

research for the department of biology at KVIS 

cooperating with the Thai-Nichi Institute of 
Technology, Bangkok. 



Convolutional Neural Network Based Nutrient Deficiency Classification in Leaves of Elaeis guineensis Jacq 27 

 

Oramon Tuntoolavest is currently a student in 

grade 12 at Kamnoetvidya Science Academy 

(KVIS), Rayong, Thailand. She is interested in 
Biology and conducting this research for the 

department of biology at KVIS cooperating with 

the Thai-Nichi Institute of Technology, 

Bangkok. 

 

Pimsiri Danphitsanuparn is a biology teacher 
with the department of Biology and 

Environment Sciences, Kamnoetvidya Science 

Academy, Rayong, Thailand. She graduated her 

bachelor’s degree in biology from Chiang Mai 
University and master’s in plant science from 

Mahidol University during 2009 and 2013 

respectively. Her interest includes 

interdisciplinary research with AI and life 

sciences. 

 

 

Voravarun Pattana-anake is currently a 2nd 

year undergraduate student studying at TNI, 
Bangkok, Thailand. She majors in the Data 

Science and Analysis department, and her 

interest lies in the field of deep learning. 

 

 

Ferdin Joe John Joseph is currently an 

Assistant Professor with the faculty of 

Information Technology, Thai-Nichi Institute of 

Technology Bangkok. He graduated his 

bachelor and master’s degrees in Computer 

Science and Engineering from Anna University 

Chennai during 2009 and 2011 respectively. He 

got his PhD in Computer Science and 
Information Systems from the National Institute 

of Development Administration Bangkok 

during 2015. His area of research includes deep 

learning, IoT and Blockchain technology. He 
has published in peer reviewed international 

conferences and journals. He is a certified Most 

Valuable Professional (MVP) with Alibaba 

Cloud. 
 


