
Abstract: In this Paper, we present Quantum Cryptanalysis
on A5/1. We focus on the fundamental query, Are Symmetric
Ciphers really insecure against quantum adversary? We tried to
understand this question by considering A5/1 symmetric key
stream cipher. The hardware implementation of symmetric
key Block cipher designs under combinational circuits, where
symmetric key Stream cipher, in particular, LFSR based
ciphers(A5/1 etc.) circuits belong to the sequential circuit
group. In this paper we presented to get a clearer view about
the quantum attack on A5/1 and hence on sequential circuit. By
exploiting Grover’s algorithm one can bypass the huge off-line
computation required for classical Time/Memory/Data Trade-
off attack. We have been focusing on practical implementation
of this quantum attack in IBM quantum computer interface.
We also implemented reduced version of Quantum A5/1(10-bit)
using Qiskit programming and also estimated number of gates
and working qubits required for full scale implementation of
A5/1 cipher.

Keywords: A5/1, IBMQ, Qubit, Symmetric key, LFSR, Grovers
algorithm.

I. Introduction

In 1930 the fundemental model of classical computers was
originally created by Alan Turing, Von Neumann and few
other researchers. Anyway the model of PCs, that Turing
or Neumann considered, are restricted by old style physical
science and subsequently named as traditional PCs. Till the
starting of twentieth century, biggest researchers authorized
that Newtonian laws overseeing the movement of material
bodies and Maxwell’s hypothesis of electromagnetism are
the principal spaces of physical science. In 1925 the disclo-
sure of X-beams and electrons towards the finish of that cen-
tury at last assisted the physicists with understanding quan-
tum mechanics and after that they understood the classical
mechanics.
In 1982 Richard Feynman[1] given the fundamental idea
about a quantum computer or quantum simulator. Gener-
ally speaking that any quantum system contains greater than
one particles can be understood by a Hilbert space. The di-
mension of this Hilbert space is exponentially large in the

quantity of particles. In such a way that, one normally think
that quantum system can effectively solve the problems that
might require exponential time on a classical systems. In
1980’s the introductory work done by Deutsch-Jozsa [2] and
Grover [3] could analyze quantum ones that are exponen-
tially quicker than the classical algorithms. In 1994 Peter
Shor [4] invented in quantum model that discrete log and
factorization problems can be accurately solved. This in-
vertion is big impact in classical cryptography. More pub-
lic key cryptosystems that are based on these hard prob-
lmes only. Online banking and whole internet communica-
tion also depends on the security of these. Thus, in public
key cryptography, this allowed for basic building blocks in
cryptography that can prevent the attacks even survival of
quantum comuters. Economic quantum computers are still
tricky. In 2012 Wineland and Haroche received Nobel prize
for Physics for “ground-breaking experimental methods that
enable measuring and manipulation of individual quantum
systems”. In 2016 Thouless, Haldane and Kosterlitz for “the-
oretical discoveries of topological phase transitions and topo-
logical phases of matter”. These outcomes may have signifi-
cance towards real applications of a quantum computer. Con-
sequently it shows that this space of research is for sure one
of the top preference in worldwide scientific community. In
2015, US security agency NSA published a report [5] where
they clearly declared the urgency of quantum safe crypto-
graphic protocols. This leads the researches to search some
alternative solutions. In classical domain, there are Code
based and Lattice based cryptosystems which are believed
to be secure in quantum paradigm. Another avenue is Quan-
tum Cryptography that warrants the security against quantum
adversary.
In modern conditions, in quantum cryptography, two most
prominent sub-domains are Quantum Key Distribution
(QKD) [6, 7, 8, 9, 10] and Quantum Cryptanalysis of Sym-
metric and Asymmetric Ciphers [11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21]. Improved Quantum Cryptanalysis of AES is
given in [22].
In May 2016, IBM launched IBM Q Experience which is
web-based platform that gives clients in the overall public
access to a set of IBM’s model quantum processors via the
Cloud. Since then, several modifications and additions have
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been executed. In most recent set-up, there exist 32 qubits
simulator (ibm qasm simulator) and several five qubit (ib-
mqx2, ibmqx4, ibmqx5) and one 16 qubit (16 melbourne)
real processors.
We have already implemented a reduced version of quan-
tum A5/1 (10 bits) in IBM Quantum interface using Quan-
tum Information Tool Kit (Qiskit)[23]. In this direction,
we achieved the Proof of Concept (PoC) regarding practical
implementation of quantum cryptanalysis of stream ciphers.
The complete details of about section may refer to [24]. In
the following section gives a brief about A5/1 cipher.

A. Outline of the Paper

The rest of the paper is organized as follows: we present
brief of A5/1 stream cipher, basics of qubits, quantum gates,
circuits for random number generator and creating entangled
state in section 2. Grover’s circuit compose using IBMQ cir-
cuit in section 3. Reduced A5/1 cipher in quantum discussed
in section 4. Number of Gates and Working qubits Required
for full scale implementation in section 5. Finally, section 6
presents the conclusive summary.

II. Preliminaries

In this section we explain the complete explanation of A5/1
cipher adopted in our paper and two main quantum algo-
rithms Deutsch-Jozsa and Grovers[25], which we use to de-
rive our results.

A. A5/1 Stream Cipher

In the GSM standard, Stream Cipher A5/1 is used for en-
crypting transmission. The arrangement of a GSM transmis-
sion is a chain of bursts. Any common channel with one
direction, each 4.615 milliseconds one burst is sent and con-
sists of 114 bits information. In each burst, keystream of size
114 bits XORed with preceding to modulation of 114 bits.
The initialisation of A5/1 uses 64-bit key and fame number
F of size 22-bit [26].

Figure. 1: A5/1 LFSRs

In Figure. 1 LFSR specifications are given. In Table 1 ex-
plains the A5/1 [27] stream cipher which is a combination
of three linear feedback shift registers (LFSRs). Every regis-
ter is link with one of the clocking bit. Using majority rule,
the registers are clocked.

Length
in bits

ControlFeedback Polynomial
bit

Tap positions

19 x19+x18+x17+x14 138+1 , 16, 17, 18
22 x22 + x21 2010+ 1 , 21
23 x23+x22+x21+x8 710+1 , 20, 21, 22

Table 1: Specifications of A5/1 stream cipher

Using clocking bit, For each and every cycle the majority bit
is determined. The register is clocked if majority bit is same
as the clocking bit. Two or three registers are clocked for
every cycle.

B. Basic of qubits and the algebra

In a classical computer the basic elements are 0 or 1 repre-
sented as a bit. The bottom line element in quantum criterion
is called the qubit or quantum bit. The physical counterpart
of a qubit is photon. The representation of qubit is denoted
as α|0〉 + β|1〉, where α and β are complex numbers, satis-
fies |α|2 + |β|2 = 1. Suppose any one measures the qubit
in {|0〉, |1〉} basis, then |0〉, |1〉 measures with probabilities
|α|2, |β|2. After qubit observation the initial state gets de-
molished and break to the observe state. This gives the qubits
|0〉, |1〉 are (in quantum) equivalent to classical bits 0 and 1.

The qubits |0〉, |1〉 denoted in column vector
[

1
0

]
,
[

0
1

]
.

Vector
[
α
β

]
represents the superposition of |0〉, |1〉.

Above information gives, each qubit contains boundless in-
formation and extract this information is not clear. Further
in real quantum implementation of circuits, it is not possible
to create a complete qubit with out errors. Finally, conclude
that every qubit contains more information than a classical
bit.
More than one qubit can be explained as a tensor product
in algebra. The tensor product of two qubits represents as
follows:

(α1|0〉 + β1|1〉) ⊗ (α2|0〉 + β2|1〉) =

[
α1

β1

]
⊗
[
α2

β2

]

=

 α1

[
α2

β2

]
β1

[
α2

β2

]
 =


α1α2

α1β2
β1α2

β1β2


= α1α2


1
0
0
0

+α1β2


0
1
0
0

+β1α2


0
0
1
0

+β1β2


0
0
0
1


Finally α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉.
All two qubit states can not be expressed as above.
Suppose two qubit state γ1|00〉 + γ2|11〉 where γ1, γ2
be non-zero, can not be expressed as inner product of
(α1|0〉 + β1|1〉), (α2|0〉 + β2|1〉). This is called as entan-
glement. Maximally entangled state is called Bell state.
Example of Bell state is |00〉+|11〉√

2
. These bell states are very

much importance in quantum information[24].

Quantum gates: The design of a quantum computer essen-
tial primitives are quantum gates[24]. Qunatum gate design
such a way that equal number of inputs and outputs and these
gates are reversable. In scientific this can be viewed as uni-
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OutputQuantum gateInput
α|0〉+ β|1〉 βX |0〉+ α|1〉
α|0〉+ β|1〉 αZ |0〉 − β|1〉
α|0〉+ β|1〉 H α

|0〉+|1〉√
2

+ β
|0〉−|1〉√

2

Table 2: Single input, single output quantum gates

tary matrices of size 2n× 2n, where these elements are com-
plex numbers. The following Table 2 gives the single input
single output quantum gates. These gates in matrix form as
follows.

• X gate:
[

0
1 0

] [
α
β

]
=

[
β
α

]
;

• Z gate:
[

1
0 −1

] [
α
β

]
=

[
α
−β

]
;

• H gate:

[
1√
2

1√
2

1√
2
− 1√

2

] [
α
β

]
=

[
α+β√

2
α−β√

2

]
.

Note that α+β√
2
|0〉+ α−β√

2
|1〉 = α |0〉+|1〉√

2
+ β |0〉−|1〉√

2
.

In this connection, we now present a simple circuit for true
randomness generation using Hadamard gate. One should
note that due to the deterministic nature of classical com-
puter, true RNG mechanism is far from realization. Most
of the RNGs in use are Pseudo Random Number Generator
(PRNG), where a small seed is used as an input and then a
deterministic algorithm generates a long stream of random
looking data. This is actually not random, as same seed will
always generate the same stream of data. Only looking at the
data, it may be computationally or information theoretically
hard to distinguish the data from a true random source, with-
out knowing the seed. On other hand, in quantum domain
True Randomness Generation is possible. The circuit is pre-
sented in Figure 2. This circuit can be implemented in IBM

H

M

Measurement at {|0〉, |1〉} basis

{ |0〉+|1〉√
2
, |0〉−|1〉√

2
}

Start with |0〉 qubit

Random bit stream

Figure. 2: Circuit for True Random Number Generator

quantum computers. The code for the circuit is given in two
formats; one is written in qasm editor (Figure 3).
We run the code in ibmq/qasm/simulator as well as ib-
mq/16/melbourne. The histograms are presented in Figure
4 and Figure 5.
The 4 × 4 unitary matrices are coming from the 2-i/p, 2-
o/p quantum gates. CNOT gate gives the 4 × 4 unitary
matrices is an example as explais below. |00〉 → |00〉,
|01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉. The related

Figure. 3: QASM Editor

Figure. 4: Simulation

matrix is


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . The utilization of these CNOT

gate and design of the circuit in Figure 6 to create the en-
tangled states and entangled denoted as: |β00〉 = |00〉+|11〉√

2
,

|β01〉 = |01〉+|10〉√
2

, |β10〉 = |00〉−|11〉√
2

, and |β11〉 = |01〉−|10〉√
2

.
The corresponding qasm program is given in Figure 7. This
code has been run in IBMQ simulator and ibmqx2 (actual
processor). The histograms are given in Figure 8 and Figure
9. Note that in case of actual processor, error appears in the
result.

III. Grover Algorithm in IBMQ

Consider a Boolean function f(x) : {0, 1}n → {0, 1} of size
n. Suppose two inputs x, x′ are equal then f(x) = 1 and 0
otherwise. So function representation as follows,

f(x) = 1 iff x = x′

= 0 otherwise

We now came to know that if we are given a Boolean func-
tion f(x), then in quantum domain we always can generate a
unitary matrix Uf . Here, we call this Uf as Of . Now, for O
following is the circuit. Consider the following circuit.
The initial state is

|ψ0〉 = |0〉⊗n ⊗ |1〉

First n qubit apply, we can apply the Hadamard gates. Thus
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Figure. 5: Actual Processor

|βxy〉
x

y

H .
⊕

Figure. 6: Quantum circuit for creating entangled state

|ψ1〉 becomes

|ψ1〉 =
1√
2n

2n−1∑
x=0

|x〉 ⊗ 1√
2

(|0〉 − |1〉

We know apply Of on |ψ1〉. We know that for x 6= x′ we
have,

|x〉
(

1√
2
|0〉 − 1√

2
|1〉
)

Of−−→ |x〉
(

1√
2
|0〉 − 1√

2
|1〉
)
.

And for x = x′ we have,

|x′〉
(

1√
2
|0〉 − 1√

2
|1〉
)

Of−−→ |x′〉
(

1√
2
|1〉 − 1√

2
|0〉
)

= −|x′〉
(

1√
2
|0〉 − 1√

2
|1〉
)
.

Thus, in general we can write,

|x〉 Of−−→ (−1)f(x)|x〉.

Hence |ψ2〉 can be written as

|ψ2〉 =
1√
2n

2n−1∑
x=0

(−1)f(x) |x〉 ⊗ 1√
2

(|0〉 − |1〉)

If we ignore the state of the last qubit, we can write

|ψ2〉 =
1√
2n

2n−1∑
x=0

(−1)f(x) |x〉

We now apply a sequence of operations (G )on the output of
the oracle Of . These sequence of operations including the
oracle Of itself is called Grover operation. These sequence
of operations includes

Figure. 7: QASM program

Figure. 8: Simulation; No error exists

Figure. 9: Actual Processor (ibmqx2): Error appears.

• n number of Hadamard operations

• Conditional phase shift operation P0

• n number of Hadamard operations

Thus G = H⊗nP0H
⊗n. Conditional phase shift operator

flips the phase of all the conditional basis states except |0〉.
Thus we can write

|x〉 → (−1)δx,0 |x〉

Operational representation of this phase shift operator is

2 |0〉 〈0| − I,

I is the identity matrix.
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|0〉⊗n

|1〉

H⊗n

y

xx

y ⊕ f(x)

Of

↑↑↑
|ψ0 |〉 ψ1 |〉 ψ2〉

Now, we will check if this is true. We apply the conditional
phase shift operator on a two qubit state |φ〉 = 1

2 (|00〉 +
|01〉 |10〉+ |11〉). Thus, the resultant state |φ1〉 will be

|φ1〉 = (2 |00〉 〈00| − I).
1

2
(|00〉+ |01〉 |10〉+ |11〉)

=
1

2
(2 |00〉 − |00〉 − |01〉 − |10〉 − |11〉)

=
1

2
(|00〉 − |01〉 − |10〉 − |11〉)

Thus, the operational representation of the conditional phase
operator is correct.
In Grover’s algorithm GOf is repeated π

4

√
2n many times.

These are called Grover’s iterations. After all iterations com-
pleted, the first n qubits are measure in the computational
basis. The measured state will be the answer.
Let |x′〉 be the measured answer. Now, set x′ as input in the
classical circuit for f(x). Check if it gives 1.

A. Analysis of the algorithm

The initial state can be written as,

|ψ0〉 =
1√
2n
|x′〉+

1√
2n

∑
x 6=x0

|x〉

=
1√
2n
|x′〉+

√
2n − 1

2n
|φ0〉

= sin θ|x′〉+ cos θ|φ0〉,

where θ = arcsin 1√
2n

. Note that this can be viewed as a
reflection of |ψ0〉 about |φ0〉. So Of |ψ0〉 is the mirror image
of |ψ0〉. Here, |x′〉 plays the role of the mirror.
Now, it can be shown that after the application of G =
H⊗nP0H

⊗n, Of |ψ0〉 is again reflected about the axis |ψ0〉
and creates an image GOf |ψ0〉. (Imagine a mirror which is
perpendicular to |ψ0〉). As we know that reflected angle will
always be equal to the incident angle, here GOf |ψ0〉 creates
2θ angle with |ψ0〉. Thus, the total angle between GOf |ψ0〉
and |φ0〉 becomes 3θ. Hence, we can now say that each ap-
plication of GOf amplifies the angle from θ to 3θ.
After k application of amplitude amplification operator
GOf , the resulting state is of the following form,

|ψk〉 = sin(2k + 1)θ|x0〉+ cos(2k + 1)θ|φ0〉.

Probability of observing |x′〉 from |ψk〉 is sin2(2k + 1)θ.
Thus, The success probability is sin2(2k + 1)θ. To make

the success probability 1
2 we need,

sin2(2k + 1)θ =
1

2

(2k + 1)θ = arcsin
1√
2

(2k + 1)θ =
π

4

k ≈ π

8θ

=
π

8

√
2n
[

As θ → 0 =⇒ sin θ ≈ θ =
1√
2n

]
.

The geometrical diagram of Grover search algorithm has
been presented below Figure 10.

Figure. 10: Geometrical diagram of Grover’s algorithm

B. Grover in IBMQ Circuit Compose

Grover Search algorithm for two-input Boolean AND func-
tion is presented in Figure 11. Note that after measurement,
we are getting all 1 bit string.

Figure. 11: Grover Circuit

Some of the symmetric key algorithms are vulnerable in a
model that allows superposition attacks. In most pratical
circumstances these attacks are not realistic. For example,
newly, there have been considerable cryptanalysis results to
solve system of non-linear equations for breaking some sym-
metric algorithms. Solving these non-linear equations is then
attacked using a altered version of the quantum linear equa-
tion solver algorithm. The results are primarily dependent
on the number of the non-linear system, which turns to be

132



Quantum Cryptanalysis on A5/1 Stream cipher

difficult to compute. Given the condition number is some-
what little, then, at that point one might get an advantage
contrasted with brute-force Grover search.
Theorem 1. Classical circuit size T (n), If f : {0, 1}n →
{0, 1} is determinable with above size, then there exists a
quantum circuit of size O(T (n)). The mapping is |x〉 |y〉 →
|x〉 |y ⊕ f(x)〉, likely O(T (n)) extra working bits are used.
In case of A5/1, the implementation of the theorem is as fol-
lows.
Step 1:

1. The function on A5/1 defined as f : {0, 1}n → {0, 1}n.

2. In classical domain the circuit requires polynomial
many gates and bits.

3. From theorem above, one can construct a quantum cir-
cuit Uf : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉 with polynomial
many quantum gates and qubits. Here, x and y are n-bit
strings.

Consider the circuit in Figure 12.

|0〉⊗n
|0〉⊗m
|0〉⊗n

H⊗n

z

y

xx

y ⊕ f(x)
z

Uf

↑↑↑
|ψ0 |〉 ψ1 |〉 ψ2〉

Figure. 12: Circuit for Uf , where f is A5/1 function

Step by step analysis of the circuit is itemized below.

• Start with 2n+m many |0〉. Initial state

|ψ〉0 = |0〉n+m |0〉n

– First n qubits are used to create equal superposi-
tion of all 2n many possible inputs, i.e.,

|x〉 =
∑

i∈{0,1}n
|i〉

– Next m qubits are used to generate majority vot-
ing, i.e., are used for the clocking functionality f ′

• Remaining n |0〉s are exploited to store the output bit
stream

• f is followed by f−1 so that any input string |x〉 and |z〉
remain unaltered

• |y〉 is set to |0〉 so that |y ⊕ f(x)〉 = |f(x)〉

• We can write

|ψ0〉 = |0〉n ⊗ |0〉m ⊗ |0〉n

|ψ1〉 =
∑

i∈{0,1}n
|i〉 ⊗ |0〉m ⊗ |0〉n

|ψ2〉 =
∑

i∈{0,1}n
|i〉 ⊗ |0〉m ⊗ |f(i)〉

• Thus, Uf : |x〉 |z〉 |y〉 → |x〉 |z〉 |f(x)〉

In the next phase, |ψ〉2 and one |0〉 will be the input of the
Grover search algorithm. Extra n qubits which represent the
keystream k = k1k2 · · · k64 will also be the inputs of Grover
algorithm. Grover function (fG) will be 1 iff |f(x)〉 = |k〉
for some x and 0 otherwise, i.e.,

fG(f(x)) =1 iff f(x) = k

=0 otherwise

Grover iteration G = (2 |ψ2〉 〈ψ2| − I)O are repeated for√
2n many times, where O is the Grover oracle. In other

words, O ≡ UfG . In Ω(
√

2n), we will get |x〉 ⊗ |z〉 ⊗
|1〉⊗n+1 ⊗ |k〉 while measure all the registers. |x〉 will be
the secret key. Sometimes we may get false positive. To
avoid this situation, after getting the key we should compute
the A5/1 function f and check if f(x) = k. If not we will
repeat the entire procedure once again.
We have implemented the reduced version of Uf (RA5/1) us-
ing Quantum Information Tool Kit (Qiskit). The classical de-
scription of this RA5/1 and the corresponding quantum codes
will be presented in the following subsection.

IV. Cryptanalysis of Reduced A5/1 in quantum

We are implementing quantum attack on 10 bits A5/1 in IBM
quantum computer, precisely on 32 qubits qasm simulator.
Due to the limitation of qubits in IBM interface, we could not
implement the cipher in full scale. However, we will be able
to deliver the complete code and to provide the estimation
of number of work qubits and quantum gates for full scale
implementation.

A. Classical Description of RA5/1:

RA5/1 consists of three LFSRs R1, R2 and R3 of lengths 3,
3 and 4 bits respectively. Every register is restore according
to its respective feedback polynomial. The tap positions of
the LFSRs correlate to respective primitive polynomials. The
tap positions of R1,R2,R3 are 2,1;2,0;3,2 respectively. De-
pend the values on clocking bits, R1, R2 and R3 are clocked
irregularly.

B. Majority Rule:

At each cycle, one of the register is clocked iff the majority
of all 3 clocking bits is equal to its clocking bit. At every step
at least two or three registers are clocked in Table 3.

C1 C2 C3 Majority R1 R2 R3

0000 XXX
0001 XX
0010 XX
1011 XX
0100 XX
1101 XX
1110 XX
1111 XXX

Table 3: Majority Rule Table
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C. Parameters Specification for the Shift Registers:

Parameters of the shift registers R1,R2 and R3 are specified
in Table 4 where as the diagram of RA5/1 is given in Figure
13.

LFSR Length
in bits

ClockingFeedback Polynomial
bit

Tapped
bits

R1 3 x3+x2 2,11+1
R2 3 x3+x 2,01+1
R3 4 x4+x3 3,22+1

Table 4: Parameters of RA5/1 stream cipher

Figure. 13: RA5/1 diagram

Figure. 14: Reverse RA5/1 diagram

D. Reverse LFSR specifications:

Parameters for the shift registers R′1,R′2 and R′3 for reverse
RA5/1 are specified in Table 5 where as the schematic dia-
gram is presented in Figure 14.

E. Majority Rule for RUf :

In quantum domain for the majority rule, we have to define a
function. We store the input states of LFSR R1, R2 and R3

in quantum registers q0, q1, q2, q4, q5, q6 and q8, q9, q10, q11
respectively. Similarly, the output bits from R1, R2 and R3

are stored in q3, q7 and q12 respectively. Now, we define the

LFSR Length
in bits

ClockingFeedback Polynomial
bit

Tapped
bits

R1 3 x3+x 2,02+1
R2 3 x3+x2 1,02+1
R3 4 x4+x 3,03+1

Table 5: Parameters of Reverse RA5/1

function f : {0, 1}3 → {0, 1} as follows.

f = (q1 ⊕ q5) ∧ (q1 ⊕ q10) ∧ (q3 ⊕ q7 ⊕ q12)

⊕(q1 ⊕ q5) ∧ (q1 ⊕ q10) ∧ (q3 ⊕ q7)

⊕(q1 ⊕ q5) ∧ (q1 ⊕ q10) ∧ (q3 ⊕ q12)

⊕(q5 ⊕ q10) ∧ (q1 ⊕ q10) ∧ (q7 ⊕ q12)

F. Number of Gates and Work Qubits Required for RA5/1

Number of gates and work qubits required for RA5/1 is tab-
ulated in Table 6.

Number of GatesName of the GateS.No
10H1
23CNOT2
3X3
7SWAP4
7Toffoli5
27Number of work qubits6

Table 6: Number of gates required for RA5/1

The following Figure 15 gives the complete structure of
RA5/1

Figure. 15: complete structure of RA5/1
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G. Qiskit Program for RA5/1

Qiskit program for Reduced A5/1 is given below

######### i n i t i a l s t a t e #########
qc . h ( q [ 0 ] )
qc . h ( q [ 1 ] )
qc . h ( q [ 2 ] )
qc . h ( q [ 4 ] )
qc . h ( q [ 5 ] )
qc . h ( q [ 6 ] )
qc . h ( q [ 8 ] )
qc . h ( q [ 9 ] )
qc . h ( q [ 1 0 ] )
qc . h ( q [ 1 1 ] )
######### c l o c k i n g b i t s #########
qc . cx ( q [ 1 ] , q [ 1 3 ] )
qc . cx ( q [ 1 0 ] , q [ 1 5 ] )
qc . cx ( q [ 1 3 ] , q [ 1 5 ] )
qc . cx ( q [ 5 ] , q [ 1 4 ] )
qc . cx ( q [ 1 0 ] , q [ 1 4 ] )
qc . cx ( q [ 5 ] , q [ 1 3 ] )
qc . cx ( q [ 1 8 ] , q [ 2 4 ] )
qc . cx ( q [ 1 3 ] , q [ 2 1 ] )
qc . x ( q [ 1 3 ] )
qc . x ( q [ 1 4 ] )
qc . x ( q [ 1 5 ] )
######### LFSR−1 #########
qc . cx ( q [ 2 ] , q [ 3 ] )
qc . cx ( q [ 1 ] , q [ 2 ] )
qc . swap ( q [ 1 ] , q [ 2 ] )
qc . swap ( q [ 0 ] , q [ 1 ] )
######### LFSR−2 #########
qc . cx ( q [ 6 ] , q [ 7 ] )
qc . cx ( q [ 4 ] , q [ 6 ] )
qc . swap ( q [ 5 ] , q [ 6 ] )
qc . swap ( q [ 4 ] , q [ 5 ] )
######### LFSR−3 #########
qc . cx ( q [ 1 1 ] , q [ 1 2 ] )
qc . cx ( q [ 1 0 ] , q [ 1 1 ] )
qc . swap ( q [ 1 0 ] , q [ 1 1 ] )
qc . swap ( q [ 9 ] , q [ 1 0 ] )
qc . swap ( q [ 8 ] , q [ 9 ] )
qc . ccx ( q [ 1 3 ] , q [ 1 8 ] , q [ 1 9 ] )
qc . ccx ( q [ 1 5 ] , q [ 2 1 ] , q [ 2 2 ] )
qc . ccx ( q [ 1 4 ] , q [ 2 4 ] , q [ 2 5 ] )
qc . ccx ( q [ 1 3 ] , q [ 1 4 ] , q [ 1 6 ] )
qc . cx ( q [ 7 ] , q [ 1 2 ] )
qc . ccx ( q [ 1 2 ] , q [ 2 5 ] , q [ 2 6 ] )
qc . cx ( q [ 7 ] , q [ 1 2 ] )
qc . cx ( q [ 3 ] , q [ 1 2 ] )
qc . ccx ( q [ 1 2 ] , q [ 2 2 ] , q [ 2 3 ] )
qc . cx ( q [ 7 ] , q [ 1 2 ] )
qc . ccx ( q [ 1 2 ] , q [ 1 6 ] , q [ 1 7 ] )
qc . cx ( q [ 3 ] , q [ 7 ] )
qc . ccx ( q [ 7 ] , q [ 1 9 ] , q [ 2 0 ] )
##########################
qc . cx ( q [ 2 3 ] , q [ 2 6 ] ) # 6 ,8 o u t p u t
qc . cx ( q [ 1 7 ] , q [ 2 0 ] ) # 2 ,4 o u t p u t
qc . cx ( q [ 2 0 ] , q [ 2 6 ] ) # f i n a l o u t p u t

Output of RA5/1 in Table 7. Final output stored in q26

100000100111110100101111100:10 011001001000100011000110101:10 011001001000101110011101011:9
001000011000010100100000000:10 100000100111110100101111100:10 011001001000100011000110101:10
011001001000101110011101011:9 001000011000010100100000000:10 000011000001001011111011001:4
001000011000010101110101011:7 000000000011110010000000010:9 011001001000100011000000101:9
100000100111111110011101100:7 101000111000010011011010101:7 000000000011111011100001011:7
101000111000011000101111100:12 000011000001000010001110010:6 111001001000101000100111110:10
001000011000011011101000101:13 100111000001001100010100101:5 101000111000011010111010101:9
100000100111111111011101100:6 100000100111110010000001001:5 000000000011111100001001100:10
111001001000100101111100010:9 001000011000011110010101011:9 000011000001001010111101001:4
100111000001001010101110000:9 001000011000011000111011100:11 100111000001000110100111110:5
111001001000101000100001100:7 000011000001000101100110101:9 000000000011111110001111100:11
100111000001001011111100000:9 000011000001000001011010010:5 001000011000011100010101001:6
111001001000100111111011011:7 000000000011111000110100000:6 100000100111111010110101011:11
100000100111111010110101001:14 000011000001000100100000101:7 111001001000100001010101110:7
000011000001000100110100111:10 101000111000010010001111110:11 011001001000101111011010010:6
100000100111110001010100010:10 000011000001000010011010010:2 100000100111110001010010000:6
000011000001000101110010101:8 011001001000100000000110111:9 100000100111111101011101100:6
000011000001001011111101001:3 100111000001000110100111100:14 000000000011110010010101011:7
100000100111111010100000010:5 000011000001001110010011110:13 011001001000100100101001011:12
100000100111111001100000000:7 000011000001000101110100101:9 000011000001000111110010111:7
000011000001001111000111110:14 011001001000100000000110101:9 000000000011111101001111110:7
001000011000011011111011110:7 011001001000101011110010101:4 000011000001001110010101100:6
101000111000011001111010101:6 111001001000100101111101011:6 000000000011111111001001110:8
000000000011111000100001011:9 011001001000100010000001110:8 100000100111110101111100111:11
100111000001001111000110101:6 000011000001000011001000000:8 000011000001000100110010101:6
001000011000010001001000101:7 000011000001000110100110101:6 000011000001001100000001100:5
101000111000010110100001001:16 101000111000011100000111011:6 100111000001001000111010010:6
001000011000010111110101001:6 101000111000011100000001001:9 000000000011111110001001100:6
000000000011110000010101001:7 111001001000100010010011110:13 111001001000100110111011011:11
011001001000101101011011011:10 001000011000010110100000000:7 011001001000101111011011001:10
011001001000101100011101011:10 100000100111111011110101011:9 111001001000100011010101100:9
001000011000011111010011001:8 000000000011111100011100111:6 001000011000011100010011001:13
000011000001000000001000000:7 011001001000101011110011100:9 101000111000011011101001110:7
001000011000010000001110101:8 100000100111111110011101110:6 101000111000010001001111110:7
111001001000100001010101100:6 001000011000010011011101110:6 111001001000101010100000111:7
011001001000100000000001100:4 011001001000101100011010000:9 000000000011110011000110000:10
111001001000100001010100111:10 101000111000010010001111100:5 000000000011110010000000000:6
100111000001000100110101110:7 101000111000011010101001100:8 001000011000010110110101011:12
000000000011111101001001100:7 100111000001000011011011001:8 000000000011111010110100010:8
000000000011111111001001100:9 100000100111110001010010010:8 101000111000011000101111110:4
001000011000011100010011011:7 001000011000011010101000111:9 100000100111110101111100101:7
101000111000011101010100000:8 101000111000010110100111011:11 001000011000010010001000111:10
001000011000010000001110111:11 011001001000100010000111110:8 000000000011110111101110111:7
000000000011111110011100111:5 011001001000101001110101100:7 100111000001001010111100000:9
000011000001001000111011011:8 111001001000100110111010010:7 000000000011110011010101001:6
100111000001000001001001011:8 100111000001000100100001100:6 000000000011111011110100000:13
001000011000011111000110000:10 011001001000101000110101100:6 000011000001000010011100000:5
100000100111111111001110101:10 000011000001001111000001110:9 100111000001001100010100111:8
111001001000100011010100111:11 000011000001000110100110111:6 111001001000101100001111011:6
000000000011111100001001110:10 100111000001001011111010000:7 111001001000101100001110000:12
111001001000100010010010101:8 100111000001000001001111001:3 101000111000010100110010000:4
101000111000011011111100111:12 011001001000101111011101001:13 111001001000100110111100000:2
000000000011111001100001011:5 000011000001000000001110010:7 000000000011110001000110010:11
000000000011111001110100000:8 000000000011111101001111100:11 000000000011111001100111001:6
100111000001001110000000111:7 001000011000011101000000000:8 101000111000010011001001100:10
101000111000011110010010010:6 101000111000011101000111001:9 101000111000010101100111011:9
000011000001000100100110101:10 101000111000011110000111001:10 011001001000100101101111001:7
101000111000010111110100010:9 100000100111110011000111011:5 011001001000101000110011110:8
100000100111111010100110000:5 101000111000010110100111001:9 000011000001001101010101100:7
100000100111110010010100000:7 100000100111110011010100000:8 101000111000010111100001011:7
001000011000011101010011001:9 011001001000100111101000000:13 100000100111110000000001001:11
100111000001001000101000000:8 001000011000010101100000010:5 000011000001001101010011110:9
011001001000101101011101011:13 000011000001001101000111100:9 101000111000011100010100000:11
000011000001001101010011100:18 111001001000101000100111100:5 111001001000100111111100000:10
000011000001000111100110101:5 001000011000010000011011110:8 100000100111110101111010111:8
000011000001000111100000101:6 000000000011111000110010000:5 111001001000100000010100101:8
011001001000100101101111011:4 001000011000011111010101011:3 111001001000100001010100101:6
111001001000100010010101110:7 000000000011110101101110101:8 001000011000011001101000101:7
000000000011111101011010111:10 011001001000101110011011001:7 000011000001000011011010000:8
101000111000010100100001001:9 011001001000100001000001100:7 000011000001001010111011001:10
111001001000100000010100111:11 000000000011111010110010000:3 100000100111110101101001100:7
001000011000010010001000101:5 100000100111111000110011001:7 000000000011110011000000000:8
000000000011111011110010010:7 100111000001001111010010101:2 000011000001000000011100010:8
000000000011110111111101110:9 011001001000101101011010010:3 111001001000101010100001110:4
100111000001001100010010101:11 011001001000101010110100111:6 000000000011110100101110101:4
100111000001001100000000111:2 000011000001001010101111001:8 000011000001001011111011011:7
101000111000011111010010010:6 001000011000011001101110111:4 011001001000100010000000111:10
011001001000100001000000111:9 000000000011110001000000000:6 011001001000101000110101110:4
011001001000101101011010000:6 101000111000011111010100000:7 100000100111110011000001011:8
000011000001000011001000010:5 000000000011111111011010101:6 000011000001000101100000111:7
000011000001001110000111110:6 011001001000100010000000101:6 100000100111110101101111100:11
101000111000010000011100111:10 000011000001000010011100010:11 001000011000011000111101100:6
100111000001001000101000010:7 100000100111110011000111001:12 011001001000101011110100111:8
001000011000010000011101110:5 000011000001001001101111011:6 101000111000010110110100000:10
001000011000011011111011100:7 100111000001001000111100010:2 100111000001001000101110000:5
000000000011110110101110111:6 100000100111111010110011001:7 000000000011110010010101001:8
111001001000101101001110010:3 011001001000100000000000101:3 011001001000100010000111100:10
001000011000011111010011011:10 100111000001001010111100010:5 100111000001001011111100010:7
101000111000011001111010111:3 111001001000100001010010111:6 000011000001000000011010010:11
000011000001000100110010111:8 000011000001000111100110111:9 101000111000011100000001011:6
100111000001000011001111011:4 000000000011111010100111011:11 000011000001001000111101011:10
101000111000010110110010010:7 001000011000010100100110000:7 100000100111110110111010101:2
111001001000101100001000010:8 100000100111110000010100000:6 001000011000011000101110111:5
100111000001000001011101011:7 101000111000010110110100010:9 001000011000011101010011011:8
100000100111111110001110111:4 000000000011110100101000101:13 101000111000010101110010000:6
001000011000011001111011100:11 111001001000100000010011110:10 000000000011111100011100101:5

Table 7: Final keystream stored in q26 and number of shots
requried for each key stream generation
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V. Estimation: Number of Gates and Work
Qubits Required for complete A5/1

Number of gates and work qubits required for complete A5/1
is tabulated in Table 8.

Number of GatesName of the Gate
64H
24CNOT
3X
61SWAP
8Toffoli
81Number of work qubits

Table 8: Number of gates required for A5/1

Three LFSR’s used in A5/1 are
LFSR-1: x19 + x18 + x17 + x14 + 1,
LFSR-2: x22 + x21 + 1,
LFSR-3: x23 + x22 + x21 + x8 + 1.
The number of gates and qubits required in Table 9.

LFSR-3LFSR-2LFSR-1Name of the Gate
232219H
313CNOT
---X
222118SWAP
---Toffoli

Number of work-
ing qubits

242320

Table 9: Number of gates required for LFSR’s

VI. Conclusion and Future Research Plan

The total number of qubits are required for complete A5/1,
together with the required number of Toffoli, swap, cnot and
working qbits is summarized in Table 8,9. Our attack model
was based on a brute force searching via a parallelized ver-
sion of Grover’s algorithm. Poof of Concept (PoC) of quan-
tum cryptanalysis on A5/1 also exists. We are using IBM
quantum interface only. However, quantum preparedness for
other interface like Google, Intel, Rigetti etc., became impor-
tant in the state-of-the-art situation. So effort should be taken
in this regard and would be our future researach direction.
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