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Abstract: Recent disastrous incidents in health care system 

have disturbed the continuous process of care, leaving the health 

care sector in a ‘state of emergency’. The rise of trust flaw 

between patients and health bionetwork might hamper the 

aspired progress of the Indian health care sector and health of 

the nation. With these rising costs and aging population, public 

leading a miserable life every day. Government need to take 

initiative of reexamining the health care system in some of the key 

features like assurance handling, compliance to treatment and 

care protocols, guidelines, cost control, disbursement models, 

integrity and technology enactment. In this situation, Wi-Fi 

transmission can be accessible with new traditions of health care 

delivery that lessens cost, diminishes victim’s distress and man 

power. This wireless structure can be constructed using very 

large-scale integration (VLSI) concept which is appropriate for 

biogenic applications. VLSI design in biomedicine produces 

reduction in size of the chips, range, and speed enhancement. In 

this analysis, various proposals are scrutinized for VLSI 

employment of neural networks which is stated as CMOS 

fabrication technique, architecture of medical implant 

communication system (MICS) receiver for critical medical 

operations, field programmable gate array (FPGA) execution of 

semantic networks, neuro-fuzzy system, neuromorphic 

computing approach,  neural net performance in analog 

hardware and digital network. Furthermore, the merits and 

demerits of these classifications and methods are covered here. 

 
Keywords: Biomedical, Disbursement, FPGA, MICS, 

Neuromorphic, Protocol, VLSI.  

 

I. Introduction 

Today is the time of growth and on the other hand, it is also the 

period of growing pains. Moreover, the health care sector is 

restricted to three factors: allocation, utilization and awareness. 

Currently, there exists a big gap between these factors which 

leads to a disintegrated system with inadequate access to health 

care. Though the issues like enlarged aging trend, accessibility 

and privacy occur in medical care field but the evolution of 

technologies to solve health problems has developed fast so far. 

Here comes into the existence of wireless technology, which 

reduces the patient’s pain points, cost and man power. Also, 

there are wireless devices available present day that are 

implanted in patients body with the accurate technology  for 

monitoring patients and their medical conditions, the data 

access is very easy, cost is minimized and bed space is saved. 

Multi-objective optimization problem is the streamlining of 

various functions instantaneously and attaining a solution 

which is best in respect to all of the objective functions. These 

problems are present at various levels of VLSI circuit 

optimization [1]. Medical implant communication system 

(MICS) is a low power, short range (2 m), high data rate, (core 

band is 402-405 MHz) communication network which has 

been recognized across the globe for transferring the data to 

help the diagnostic or analeptic functions linked with medical 

implant devices [2], [3]. 

Neurology is the medical field worried with the detection 

and therapy of ailments of the nervous system, which includes 

the brain, the nerves and spinal cord. There are more than 600 

diseases of the nervous systems, which include brain tumors, 

epilepsy, Parkinson’s disease. 

Artificial neural networks (ANNs) are computing systems 

virtually stimulated by the biological neurons that constitute 

animal brains. Such systems learn to accomplish task without 

being automated with particular rules. ANN uses the 

processing of brain as a valid point to build algorithms that can 

be used to guide complex patterns and prediction problems. 

ANN considers data samples rather than the entire data set for 

any solution which in turn save money and time. ANNs are 

networks of computing elements that have the capacity to 

respond to input stimuli and generate the desired output during 



Sowmya et al. 156 

VLSI design of neural networks [4], [5]. Analog hardware 

needs to take care with respect to some key aspects: 

substrate-noise, variations in power supply, drift, leakage etc. 

But analog VLSI implementation of ANN by means of back 

propagation algorithm diminishes cost and power dissipation. 

In order to minimize the power consumption, analog 

feedforward neural networks are to be considered for solving 

the classification problems very easily [6], [7]. Digital neural 

networks are almost produced automatically from a logic 

description of their functions. Digital ones are well acquainted 

with new processes and hence redesigning is not required. 

With these new processes, power and area are lessened in 

order to make the digital circuits optimized [8], [9]. Digital 

neural networks are highly opted for classification problems 

even it is with or without analog-digital (AD) conversion of 

input signals. And moreover, digital networks surpass analog 

networks when it comes to with or without ADC [10]. 

The utilization of field programmable gate array (FPGA) for 

neural network design gives flexibility in programmable 

systems. With low precision neural network implementation, 

FPGAs have faster speed and lesser size for real time 

application than VLSI design [11], [12]. FPGA plays a very 

critical role in data sampling and processing industries due to 

its parallel architecture, low power consumption [13].The 

common neural network construction on FPGA SOC platform 

can achieve both forward and backward algorithms in deep 

neural networks (DNN) with high production and easily gets 

accommodated to the type and scale of the neural networks 

[14], [15]. FPGAs are some kind of hardware accelerators 

which provide programmable and huge parallel architecture. 

The mixture of power of GPUs with the reliability of FPGAs 

extends the scope of problems which can be accelerated [16]. 

Neuro-fuzzy systems are characterized as special multilayer 

feedforward neural networks. This system is educated by a 

learning algorithm derived from neural network theory. Fuzzy 

logic makes judgment on the basis of raw and uncertain data 

given to it. These are used to solve non-linear and complex 

problems [17], [18]. Fuzzy controller executes estimated 

reasoning on the basis of human way of perception to gain the 

control logic. De-fuzzifier alters the fuzzy output to the desired 

output in order to control the system [19].  

In recent times, neuromorphic has been used to discuss 

about analog, digital, mixed-mode analog/digital VLSI and 

software systems that sketches the models of neural systems. 

The design of neuromorphic computing on the hardware level 

can be registered by oxide-based memristors, spintronic 

memories, threshold switches and transistors [20], [21]. 

Neuromorphic computing systems are highly connected and 

parallely consume relatively low power and process in memory 

[22]. Implementation of biomedical systems with the help of 

VLSI and wireless mechanisms are evolving day by day. 

Although the analog and digital types have their own 

advantages but while coming to design phase, digital ones are 

considered due to their robustness and ductility [23]. Spike 

sorting is the categorization in which, spike corresponds to 

which neuron and it is a very challenging problem. With the 

help of amplitude discriminator, separation of spike with 

respect to different neuron makes an easy way in terms of 

fastness and implementation time [24]. 

 The paper is planned as follows. The literature review 

regarding VLSI implementation in biomedical applications is 

summarized in section 2. Comparison of previous works with 

the corresponding results is reported in section 3. Finally, 

section 4 concludes it. 

II. Literature Review 

Kashfi, F. et al. [1] reported multi-objective optimization 

method for VLSI circuits. This method successfully 

incorporates various forms of power and delay. In general, out 

of the two models: convex & non-convex, convex models 

achieve single step optimization based on an additional 

modelling error, while non-convex method peaks global 

optimum only if analytical gradient is used. Three methods: 

weighted sum, compromise programming (CP) and satisficing 

Trade-off method (STOM) help in achieving multi-objective 

optimization where analytical gradient and convex model 

results in good individual optimization. Weight sum is not 

preferred in resolution of multi-objective optimization issue. 

STOM is recommended based on the designer’s interest in a 

certain point. 

Kumar, V. S. B. et al. [25] studied on the current trends in 

VLSI design, which focuses on VLSI structures with 

bio-inspired algorithms. The testing results are based on 

assessing the performances levels of different VLSI studies in 

fixing the optimal precise values. Enhancements such as 

self-adaptive swarm optimization and VLSI optimal design are 

verified without the use of bio inspired algorithms. With 

utmost care, measure and analysis of floor planning issue is 

addressed. 

Cassidy, S. A. et al. [20] provided an insight on 

neuromorphic architectures during the times of nano-CMOS; 

helps to understand the parallel communication connection 

responsibility for the build-up of spiking neurons and spike 

timing dependent plasticity (STDP) learning circuit. The 

neurons are thus treated as digital arithmetic logic units and 

communication processors, thereby paving the way to neural 

design optimization by spiking neurons & STDP learning, 

which help authentication of design methodology with potency 

of cortical growth. 

Sonar, S. N., et al. [11] depicted the study of targeting area 

optimization in reconfigurable devices (FPGA) and it shows 

that area optimization as one of the major issues due to 

reconfigured structure for space applications. A new element 

Reed-Solomon (RS) encoder has been identified with the help 

of VHDL language, which takes very less area on FPGA but 

uses an ultra-low-cost VLSI planning of RS corrector. This RS 

corrector is associated with a solid hardware problem, 

addressed by utilizing the programmable resolution with 

respect to a mass variety of applications. 

Hafliger, P. et al. [26] derived a single learning rule on the 

basis of Riccati equation that is used on volatile capacitive 

storage for synaptic weights. Moreover, time dependent 

learning rule is used to keep a track of temporal correlations in 

spike trains to get the estimated weight normalization. 

Chen, A. C. et al. [27] planned for an active VLSI circuit 

design that consists of an adaptive fuzzy predictor, voting 

bases scheme and tri-stage entropy encoder, which helps in 
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increasing both proficiency and potency of 

electroencephalogram (EEG) signal transmission over wireless 

body area network (WBAN). Performance of compression rate 

is measured with an average value of 2.35 for 23 channels with 

the help of CHB-MIT Scalp EEG database, where the latest 

method delivered 14.6% upsurge in compression rate to 37.3% 

reduction is cost of the hardware. A pipelining technique has 

been used to expand the performance of the future design. 

Chen, S.-L. et al. [28] preferred VLSI circuit design of 

micro control unit for WBSNs, consists of an asynchronous 

interface, a multi-sensor controller, a register bank, a 

hardware-shared filter, a lossless compressor, an encryption 

reader, an error correct coding (ECC) circuit, a universal 

asynchronous receiver/transmitter interface, a power 

management and a QRS complex detector. A hardware sharing 

procedure is utilized to diminish the silicon area of a hardware 

shared filter for outcome of low-pass, high-pass and band-pass 

filters with respect to several body signals, where the current 

encryption coder performs in increasing the average 

compression rate over 12% in ECG signal, providing body 

signal analysis and filtering security for WSBNs. In addition to 

that, QRS detector has been built to evaluate the ECG signals 

and encryption encoder on the basis of asymmetric 

cryptography process has been incorporated to safeguard the 

physical information throughout the data transmission. 

Chen, S.-L. et al. [29] projected a lossless compression 

algorithm to minimize the transmission and storage data, where 

a look-up table framework helps to evaluate the performance 

and two-stage entropy encoder by using pipelining technology, 

thereby helping us to achieve lower hardware cost, minimal 

power consumption and a better compression rate with respect 

to other ECG encoder designs. Furthermore, VLSI 

architecture has been considered for wireless health care 

monitoring applications. 

Chen, S.-L. et al. [30] defined hardware-oriented lossless 

method for ECG compression algorithm which is based on 

Huffman’s coding in utilizing fuzzy decision and particle 

swarm optimizer (PSO) to gain high performance and low 

complexity, where the average compression rate is improved 

to 6.4% and condensed the gate count by a minimum of 8.2%. 

Here, it finds the optimal parameters by means of PSO 

algorithm to improve the accuracy of prediction values and the 

core area has been manufactured using a 90 nm CMOS 

fabrication procedure. 

Mohana, M. S. et al. [31] approached to compress ECG in 

remote and zero lossless decompression by the use of a mixture 

of three different procedures: Strategic execution, Golomb rice 

coding and pressing configuration to expand the storage room 

by lessening the transmission time. Golomb rice coding has 

been utilized to encode the expectation error. Pressing 

configuration has been preferred to allow the constant 

interpretation process. The strategic execution is measured to 

make sure that it deploys more than 48 chronicles for 

MIT-BIH arrhythmia data set. This algorithm describes better 

finishing results when compared to previous lossless ECG 

compression process. Using Xilinx code, a decreased 

sophistication lossless external counter pulsation (ECP) 

pressure is achieved by a multi-purpose straight indicator 

setting versatile Golomb-rice.  

Shalchyan, V. et al. [32] acquainted with wavelet-means 

manifestation which combines the wavelet shrinkage denoising 

along with multiscale edge detection for easy sensing and 

finding the occurrence of action potentials in noisy signals. An 

unsupervised optimization is offered to improve the 

uncovering performance by eradicating the dependency of the 

method with respect to mother wavelet. On the basis of 

correlation similarity measure another unsupervised criterion is 

explained to appraise the wavelet selection during clustering 

process to boost the spike sorting performance. The current 

method is compared with the past records with the help of wide 

range of accurate virtual data as well as certain trial recordings 

of intracortical signals from freely moving rats. The updating 

the wavelet selection of clustering process is shown to develop 

the classification performance in order to maintain the same 

wavelet as for the detection stage. 

Lewicki, S. M. [33] reported the algorithms and methods for 

noticing and categorizing action potentials, possibly the major 

concern referred to as spike sorting. It confers the difficulties 

of neural activity and the common issues of signal sensing and 

classification. It studies and explains the algorithms and 

techniques applied to most of the problems in spike sorting and 

examine the pros and cons of each and the applicability of these 

methods for various types of experimental demands. It is 

written for the need of physiologist to use simple procedures 

which will enhance new yields and lower the selection 

preconceptions of old practices and also for those who are 

willing to spread on or encompass more cultured algorithms to 

meet new trial problems. 

 Rácz, M. et al. [24] aimed to present the current results on 

detection, classification and prediction of neural activities on 

the basis of multichannel action potential recordings. Deep 

learning models using convolution neural networks and a 

mixture of recurrent and convolution neural networks have 

been applied. Latter is used for spike detection and former one 

for sorting and anticipating spiking activities. An average 

accuracy of 89% in categorizing activities generated by more 

than 20 different neurons has been observed. 

 Elgendi, M. et al. [34] explained the lossy compression 

method III appropriate for remote health monitoring systems. 

This method is authorized with QRS detection and is reachable 

for smart homes, wearable devices and point-of-care systems. 

It provides the long-term and constant nursing for elderly and 

patients with inadequate agility and those with less access to 

health care. The specified substantial data collection, broadcast 

and scrutiny involved in monitoring process made method III 

to attain a compression ratio that is six times faster with a high 

QRS detection accuracy. The outcome proves the system 

readiness and usefulness of real time health care tracking. 

Goldberg, H. D. et al. [35] presented a scheme for deploying 

the highly-linked; re-design networks of assimilate-and-fire 

neurons in VLSI. Neural activity is programmed by using 

spikes, whereas the report of an energetic neuron is connected 

through an unsynchronized request and acknowledgement 

cycle. Probabilistic transmission of spikes is selected to design 

synaptic weights and memory-based look-up tables to arrange 

arbitrary interconnection topologies. The construction is 

flexible, ascendable and well matched to multi-chip systems. 

Numerous modules are connected in series and parallel to 
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execute large-scale, multi-layered neural processing systems. 

Crotty, P.et al. [36] investigated on the energy efficiency of 

inter spike interval neural codes. The hypothesis states that 

nature takes full advantage of information processing and its 

energy efficiency expanding the energy ratio based on the 

neuronal firing frequencies. Based on ISI and noise 

distributions, it is understood that anticipated ideal frequencies 

are in the same range and ISI codes are as effective as discrete 

binary and frequency codes. 

Levy, W. B. et al. [37] announced the phrase “economy of 

impulses” to convey that the capability for consecutive neural 

systems makes use of lower and least levels of cell firings in 

order to produce an outcome of equal encodings. The final 

economy of impulses is a neural code of minimal idleness. To 

maintain the energy efficient information transmission, 

reduction in average firing rate is required which is achieved by 

both binary and analog neurons expenditure of neuron. 

Murugan, S. et al. [12] talked about a receptive neural chip 

using FPGA as this helps in learning competence by 

manipulating the inherent parallelism of neural network. As a 

result, fast prototyping is conceivable for real-time applications, 

such as speech recognition, speech synthesis, image processing, 

pattern recognition and classification. On-chip learning method 

is manufactured to overcome XOR problem with the help of 

back propagation based multilayer perceptron and is applied in 

VIRTEX-E FPGA platform using VHDL code. 

Hamdan, M. K. et al. [38] observed that convolution neural 

network (CNN) became popular with respect to accuracy and 

an effective algorithm, which has been used in various 

applications such as handwriting digit recognition, visual 

recognition and image classification. It is seen that a tool helps 

developers to automatically generate VHDL code over a 

configurable user-interface for their chosen CNN. This tool has 

been enhanced to create a flexible, accessible, reconfigurable 

and highly parallel implementation for CNN models. VHDL 

generator is described by applying a small-scale (Le-Net) and 

large-scale (Alex Net) CNN models on Virtex-7. 

Meijer, B. L. P. [39] showcased that study of static 

feedforward neural network can help to contain continuous 

dynamic properties like delays and phase shift. It is 

representing a wide class of non-linear and dynamic systems, 

arbitrary nonlinear static and quasi-static as well as arbitrarily 

lumped linear dynamic systems where models’ generators are 

executed for a range of pre-defined analog circuit simulators 

with support for VHDL-AMS and Verilog-AMS language 

standards. 

Zhang, C. et al. [40] projected a roofline-model-based 

method for convolution neural network’s FPGA acceleration. 

In addition to that, CNN for FPGA optimizes networks 

computation and memory access with the help of this model 

using enumeration and developed on Xilinx VC707 board 

which surpasses all earlier work. The best design for each layer 

is found out in this roofline model. 

Shawahna, A. et al. [41] discussed the application of CNN in 

image detection and recognition. It focuses on acceleration 

techniques for deep learning algorithms from hardware point 

of view, based on the recent advancements of CNNs on FPGA. 

Key structures operated by various FPGA based CNN 

acceleration methods; helps gain precision and provide 

references in simulation. Efficient hardware is thus identified 

by use of tools for generating RTL scripts, which in turn helps 

in automating the design process and design space 

investigation. 

Wang, T. et al. [16] systematically explored the neural 

network accelerator based on FPGA. A review on accelerator 

is carried out which is designed for particular algorithms, 

specific problems, algorithm features and general templates. 

Comparison is made on the design and implementation of the 

accelerator on the basis of FPGA under various devices and 

network models and also compared it with the CPU and GPU 

versions. The advantages and disadvantages of accelerators on 

FPGA platforms have been discussed to explore the operations 

research in future. 

Guo, K. et al. [13] contemplated that CPU platforms faces 

difficulty in computational capacity whereas GPU overcomes 

the same. Further, the evaluation has been executed using 

various FPGA based accelerator designs with software and 

hardware methods to improvise the speed and energy 

efficiency. It is also said that neural networks are very well 

known for their great work in computer vision over traditional 

algorithms and are widely accepted in image, speech and video 

recognition. The state-of-the-art neural networks and the 

mechanisms used have been modified. 

Bañuelos-Saucedo, M. A. et al. [8] focused on FPGA based 

digital implementation of McCulloch-Pitts neuron, consisting 

of non-linear activation function: step, ramp saturation and 

sigmoid helped to analyze the outcome based on speed and 

percentage of chip usage. The design of neurons is 

programmed via VHDL code and the simulation is done using 

Xilinx 3.0 software. 

Dalgaty, T. et al. [21] attributed the stable development in 

computing systems for shrinking of semiconductor technology 

but, with severe physical and technological issues. A modern 

approach named neuromorphic computing accomplishes a 

physical image of a complete neuromorphic sensory-motor 

system by systematically processing the impression of how 

data flows through insectoids or animals. And as well, the 

neuromorphic computing as an evolving solution makes 

practice of silicon technology in various ways to detect the 

computational values. 

Smith, L. S. [42] assisted by giving a modern view for both 

sensing and neural modelling producing systems using 

neuromorphic computational systems. The history and range 

of neuromorphic systems has been reviewed and executed 

respectively. 

Upadhyay, N. K. et al. [22] studied that neuromorphic 

computing can learn and perform the task on its own by 

communicating with its surroundings. So, integrating that type 

of chip with CMOS processors will solve a variety of problems 

being faced by today’s Artificial Intelligence (AI) systems. The 

basic operations like matrix multiplication and convolution 

depend on CMOS based multiply-accumulate units which are 

restricted by von Neumann bottleneck. Most of the emerging 

memory devices can perform vector matrix multiplication 

using Ohm’s law and Kirchhoff’s law. With the help of specific 

dynamics, these devices can be used as neurons or synapses in 

a neuromorphic computing system. It describes the emerging 

nano scale devices which can efficiently reconfigure the 
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computing paradigm in coming days. 

Riyaz A. M. et al. [9] debated on complexity of human brain 

and faults of current available architecture, stressing on mixed 

mode operation of integrated circuits. Various software and 

hardware implementations to understand the modelling of 

neurons and morphed architectures are considered with 

explanation on software simulation and hardware emulation. 

As well, differences between FPGA and VLSI designs have 

been explained. 

Moradi, S. et al. [43] helped in listing out the differences 

while working with CNN on-chip architectures and enabling 

existing methods for on-chip neuromorphic routing networks. 

Besides, it is mentioned that how memory and integration 

technologies help to ease the communication issues for the 

next generation intelligent computing machines. 

Rajendran, B. et al. [44] worked on building of new class of 

human brain-inspired information processing engines that 

mimics the time-based data encoding and preprocessing aspect, 

defines the building blocks of neuromorphic computing 

utilizing Von Neumann computing styles. The ideas and 

specifications of building blocks of neuromorphic platforms, 

hardware neurons, synapses and architectures were defined to 

maintain the connectivity among them. Based on the nanoscale 

memristive devices, demonstration of certain calculations in 

place sidestepping the Von Neumann bottleneck and capturing 

timing-based correlation in signals is given. Likewise, some 

signal processing applications were discussed. 

Qi, Y. et al. [14] suggested practical experiment with a 

multicore digital neuromorphic processing system helped 

compute image edge detection and ECG applications using 

FPGA with 3x and 127x speedup when compared to Intel 

processor design, with only a change in synaptic weight and 

number of neurons. Finally, these applications were developed 

with the help of Verilog code. The design and implementation 

have been carried out on Altera Quartus II FPGA platform. 

Basu, A. et al. [45] discussed on updates to neuromorphic 

computing to support architectures and algorithms with 

on-chip learning, focusing on low-resolution synapses of 

standard algorithms with applications such as brain-machine 

interfaces, robotics and other future trends. 

Rodríguez, F. G. et al. [15] worked on neuromorphic 

systems, implemented on FPGAs consist of framework boards 

connected to other platform such as SpiNNaker to allow 

successive events of spikes for boosting the motors, where 

neuro-inspired motor controller sends spike commands to 

robot post object detection and tracing for learning a task. 

Lakha, S. B. et al. [17] approached the design of fuzzy logic 

controller for stepper motor is important due to the increase in 

demand for highly parallel and high-speed fuzzy processing 

linking hardware built of 2 inputs and 1 fuzzy logic controller. 

The implementation is done on Xilinx Spartan III with the help 

of VHDL coding. 

Wilamowski, B. M. et al. [18] approached non-conventional 

structure for fuzzy controller to simplify microprocessor-based 

systems, doesn’t require signal division though possessing 

same control surfaces as fuzzy controllers. The architecture of 

said process consists of fuzzification, MIN operators, 

normalization and weighted sum blocks with 2 um n-well 

technology.  

Sadati, N. et al. [19] corresponded to the notion that the 

neuro-fuzzy controller can be utilized for a huge variety of 

processes. In this case, the inputs signals, output signals and 

processing circuits are analog whereas the chip is programmed 

digitally. And analog ones allow design of effective circuits in 

terms of low power, fast and dense. The anticipated approach 

for high speed and supple defuzzification utilizes various 

methods using a 3-layer neural network: center of gravity, 

mean of maxima eradicating the need for division thereby 

removing the speed bottlenecks of the preceding works.  

Bosque, G. et al. [46] differentiated work of over last two 

decades and the beginning of present decade relevant to 

hardware classification. Thus, it is highlighted the 

characteristics of hardware implementations of fuzzy systems, 

neuro-fuzzy systems and neural networks. 

Zhang, D. et al. [47] accentuated the management between 

fully convolutional networks (FCN) definition, description and 

systolic implementation. It offers elasticity, programmability 

and correctness with high throughput and local 

interconnections. 

Shrinath, A. K. [4] worked on anticipated neural network 

plan, which is used for analog operations like amplification and 

frequency multiplication using analog components such as: 

Gilbert cell multiplier, adders and activation functions. The 

architecture is accomplished using back propagation with new 

methods of weight storage. And for scheming and 

authentication purpose, 45 nm CMOS technology is preferred. 

The proposed neural network is used for analog operations like 

amplification and frequency multiplication. 

Pasero, E. et al. [5] delivered the silicon implementation of a 

basic cell for artificial neural systems that uses analog 

techniques to design the computing kernel. The network has an 

in-built learning capability which executes the discrete delta 

rule. A prototype chip is under construction whose 

performance has been customized to typical pattern 

recognition applications. 

Song, L. Y. et al. [6] established that the advantage of an 

artificial neural network algorithm completely is based on the 

hardware on which it is to be executed. Based on the similar 

circuit configuration for neural & electronic systems, it is easier 

to implement many neural functions in VLSI. Due to 

low-precision processing, analog devices take over digital ones. 

Similarly, ANNs are found to be resistant of lesser-precision 

elements to conventions systems based on common 

components such as adders, multipliers which are silicon area 

efficient on a comparative basis in the applications for minimal 

precision. 

Hurdle, J. F. et al. [48] debated that synchronous VLSI 

design as extremely important. Clocked circuits have every 

valuable piece of electronic hardware usage in this era. 

Additionally, these are supported by large and functional set of 

computer-aided design (CAD) tools from high level 

recognition to robotic fusion systems to have placement and 

routing benefits. Though the synchronous design has its own 

power and potentiality, but here in this case asynchronous 

systems are chosen as it matches neurocomputing in a general 

and stabilized way. Generally, it has been claimed that 

asynchronous patterns hold great capacitance in resolving 

spiky design issues faced by neural hardware researchers such 
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as: scaling of neural circuits, composing neural units, circuit 

strength and process resistant performance. 

Mazumdar, S. M., [49] demonstrated a possible normal 

training approach for feedforward type neural networks in 

view of VLSI design. The gradient sequence based back 

propagation model is lessened to evaluate the stochastic type 

of neural hardware. Furthermore, this learning algorithm is 

only used for add, subtract and logical operations to minimize 

the circuit complexity with speed improvement. The forward 

and reverse characteristics on perceptron’s have been executed 

by means of casual threshold logic. The hardware which has 

been advised contains 31 perceptron’s per sheet and works in 

parallel manner with a programmable number of layers running 

in sequential mode. 

Graf, H. P. et al. [7] opted for building an electronic neural 

network (ENN) memory with 256 neurons on a single chip 

using analog and digital VLSI technology and also by means of 

convention fabrication mechanism. In order to make the 

inhibitory connections and simulations for neurons, amplifiers 

with inverting and non-inverting outputs have been taken into 

consideration. The relation between specific neurons is 

contributed by amorphous-silicon resistors which are placed 

on a CMOS chip as part of last step in production phase. This 

method gives a very solid filling of the neurons. Electron-beam 

direct-writing has been used to guide the resistors to change 

the data stored in the network from one chip to next very 

efficiently. 

Im, J. et al. [50] has proposed an effective scheme and VLSI 

architecture of a high data rate medical implant communication 

systems (MICS) digital base-band transmitter for implantable 

medical devices. An orthogonal frequency division 

multiplexing (OFDM) relevant multicarrier system has been 

introduced to solve the data rate problem occurred by narrow 

bandwidth of 300 kHz. The transmitter which has been thought 

off offers improvised data rate by combining multiple channels 

at same time. In addition to that, for getting proper MICS 

regulation, various schemes have been applied by including 

optimized subcarrier proportion for inverse fast Fourier 

transform (IFFT) and secured side lobe suppression technique. 

The transmitter which has been approached with better 

hardware plan has been built by VLSI implementation and also 

supports a maximal data rate of 4.86 Mbps which is ten times 

faster than the precedent systems. 

Venkateswari, R. et al. [2] came up with a new feature 

called cyborg which controls the robotic arm with the help of 

brain implant. The architecture of implantable node has 

become popular as the surgically rooted node intakes very less 

power. Additionally, an effective CMOS transmitter with 

reference to low-power has been considered for implantable 

medical devices in the MICS band range. The architecture has 

been accomplished by means of cadence RF spectre tools along 

with 180 nm methodology and thus transmitter front-end 

consumed 900 microwatt power for the respective MICS 

receiver band. 

 

Islam, M. N. et al. [3] noticed that medical implant 

communication system is a low-power, short range and high 

data rate transmission network which has been accepted 

globally for broadening data in order to look after diagnostic or 

therapy functions linked with medical implant devices. The 

progress of MICS devices has been well-focused and the 

technical points for successful MICS design has been defined 

with respect to the references declared by several frequency 

management’s authorities across the world. 

Tekin, A., et al. [51] stated regarding the new un-licensed 

band offering 402-405 MHz frequency which has been 

allocated to medical communication systems (MICS) provided 

regulations by Federal Communication Commission (FCC) and 

hence used by the transceiver. Even though this band produces 

low body absorption characteristic at these frequencies but it 

causes many threats to RF designers. The investigation has 

been done on the construction of a fully integrated 402 MHz, 

0.18 um low power CMOS transmitter. Some of the issues 

associated with full integration have been discussed. Both the 

system and circuit level problems have been described here. 

Chiueh, D. T. et al. [52] communicated with reference to the 

VLSI design and testing of a high capacity associative memory 

called as exponential correlation associative memory (ECAM). 

It has been noted that the sample 3 micro-CMOS 

programmable chip is efficient of storing 32 memory patterns 

for each 24 bits. The work of ECAM chip has been showed as 

good as computer-virtual ECAM. This chip gives a fast and 

better way of response for solving many coherent issues like 

vector quantization and optical character recognition. 

 Venkatesh, S. et al. [10] focused on analog design of hybrid 

multiplier architecture where current is multiplied with the 

digital weights. The multiplier has three sub-components 

which are as follows: DAC, current steering circuits and a 

current mirror circuit. The fabrication and validation of 

Synapse has been done using cadence virtuoso. The accuracy 

and power of the circuit is checked to get better performance. 

The service has been verified by using AvanWaves. The 

architecture which was predicted followed R-beta R model for 

digital to analog conversion. The layout for MDAC, RC 

extraction and GDSII for MDAC has been studied. 

III. Results and Comparison 

In this section, earlier performances with respect to neural 

networks are explored and equated. The different attributes 

related to the proportional works are also demonstrated with 

the application of several technologies. The concerns and 

achievements of respective works are also observed. Here, 

different works are tabulated based on biomedical applications 

through the implementation of VLSI. 

 Table 1 shows the analogy of various VLSI implementations 

based on neural networks systems. Ultimately, a fully 

integrated neural network with less cost, minimum power and 

moderate area by adopting VLSI and wireless mechanism is 

aimed for the future work. 
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Refs. Parameters Implementation Type Issues Output 

Tools / 

Technology 

Used 

[1] 
Power, 

delay 
Multi objective method 

Weighted Sum: Less effective 

for solving multi-objective 

optimizations problems 

Power 

dissipation, 

delay 

VLSI 

[25] 

Power 

consumption, 

size, quality 

Self-adaptive particle 

swarm optimization 
Different designs of VLSI NA VLSI 

[20] 
Energy, delay, 

costs 
FPGA Physical size constraint 

Design of 

spiking neurons 

and STDP 

learning circuits 

Nano silicon 

and nano 

CMOS 

technology 

 [11] 
Forward error 

correction 
FPGA Area optimization 

Low cost VLSI 

architecture for 

RS corrector 

VHDL 

[26] 
Action-potenti

al neurons 

Riccati equation learning 

rule 
Large connectivity 

Weight 

normalization, 

temporal 

correlations 

VLSI 

[27] 
Compression 

rate 

Lossless compression 

algorithm, pipelining 

technique 

Power consumption 

Lossless EEG 

compression 

circuit with 

increased 

compression rate 

and lesser 

hardware cost 

VLSI 

[28] 

Chip area, cost 

and 

compression 

rate 

Asymmetric encryption 

method 

Privacy of the information 

and power consumption 

Increased 

compression rate 

in ECG signal 

and best security 

for wireless body 

sensor networks 

VLSI 

[29] 
Cost, power 

consumption 

Pipelining technique and 

two-stage entropy encoder 
NA 

Low power, 

lesser cost and 

good 

compression rate 

ECG encoder 

design for 

wireless health 

care monitoring 

VLSI 
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[30] 

Gate count, 

compression 

rate 

Fuzzy based particle swarm 

optimizer and Huffman 

entropy coding techniques 

NA 

Improved 

compression rate 

and reduced gate 

count ECG 

design for 

wearable devices 

VLSI 

[31] 
Pressure rate, 

window size 
FPGA 

Heart issues for portable 

cases 

Good ECG 

pressure 

calculation 

Xilinx 

programming 

[32] 

Spike 

detection and 

sorting 

Unsupervised optimization 

method 

Issues with the choice of 

mother wavelet shape, 

colored noise 

Upgraded 

detection and 

classification 

performance 

Brain 

computer 

interfacing 

[33]       

Action 

potentials, 

spike sorting 

Bayesian clustering and 

classification method 
Time consuming, robustness 

Good action 

potentials with 

spike shape and 

spike timing 

Computer 

technology 

[34]    

Compression 

rate, QRS 

detection 

accuracy 

Lossy compression Method 

III 
NA 

High QRS 

detection 

accuracy for 

health care 

monitoring 

Embedded and 

mobile 

technology 

[35]    

Neurons, 

synaptic 

weights 

Probabilistic synaptic 

weighting 
Modelling issues 

Good 

computations in 

address domain 

and spike timing 

Analog VLSI, 

MATLAB 

[36]     Energy ratio Hypothesis method NA 
Efficient noise 

levels 

Information 

processing 

[37]     
Binary and 

analog neurons 

Optimization and neuronal 

coding approach 
NA 

Increase in 

energy 

expenditure per 

neurons 

Information 

processing and 

energy 

efficient 

transmission 

[12]   Neural chip 
Virtex-E FPGA, On-chip 

learning method 
XOR problem 

Speech 

recognition, 

image 

processing and 

classification 

VHDL 

[38]   
VHDL 

generation tool 

FPGA, optimization 

method 
NA 

Image 

processing and 

peak 

performance 

VHDL, Xilinx 

Virtex-7 

[39] 
Delay, phase 

shift 
Hybrid modelling approach NA 

Dynamic neural 

networks 
Verilog-AMS 

[40] 
CNN 

acceleration 

Loop tiling and 

transformation method 
Complexity and scalability 

Peak 

performance 

Convolution 

neural 

networks 

technique 
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[41] 
Acceleration 

performance 
FPGA NA 

Implementation 

of deep learning 

networks 

Artificial 

intelligence, 

deep learning 

[13] 
Speed, energy 

efficiency 
FPGA Pattern recognition problems 

10 times better 

speed and 

energy efficiency 

Neural 

network, 

parallel 

processing 

[8] 
Operation 

speed 
FPGA Performance issues 

Implementation 

of powerful 

ANN 

VHDL 

[21] 

Insect-inspired 

nervous 

systems 

Neuromorphic computing, 

central pattern generators 
Classification problems 

Low-power 

computing 

systems, 

chemical 

sensing, sound 

processing and 

motor system 

control 

VLSI, silicon 

technology 

[42] 
Synapses, 

complexity 

Event bus technique, 

CMOS 

Long delay, 

interconnectivity, 

adaptiveness 

Effective 

adaptive 

synapses in big 

number 

VLSI 

[9] 

Brain 

modelling, 

synapses, 

neural 

networks 

FPGA, CMOS 

Learning and memory issues, 

some research issues related 

to software and hardware 

implementations 

NA VLSI, Xilinx 

[43] 

Power, routing 

memory, 

bandwidth 

FPGA and  CMOS 

Reliability, scalability, static 

power issues, integration 

issues 

Implementation 

of large-scale 

neuromorphic 

designs with 

respect to power 

and bandwidth 

VLSI 

[44] 

Energy 

efficiency, 

synapses, 

spiking 

neurons 

Pragmatic hardware 

implementation and spiking 

network type, FPGA 

Time, ambient temperature, 

reliability and variability 

Construction of 

energy efficient 

neuromorphic 

computing 

platforms 

CMOS 

[14] 
Edge detection 

and ECG 
FPGA NA 

Virtuous 

speedup-for 

edge detection 

and ECG 

applications 

VHDL 

[45] 

Weight, 

power, 

synapses and 

energy 

CMOS, feedback 

alignment method 
Selectivity issues 

Adaptive 

neuromorphic 

systems 

Random 

backpropagati

on, spintronic 

technology 

[15] 
Spike-based 

commands 

FPGA, ED-Scorbot 

framework 
NA 

Spike-based 

neuromorphic 

system 

VHDL, 

robotic 

technology 

[17] 
Speed, 

performance 
FPGA NA 

Design of fuzzy 

logic controller 

Xilinx Sparten 

III, VHDL 

[18] Weight, Fuzzification, Stability Non-convention VLSI, 2um 
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accuracy normalization and weighted 

sum, Takagi- Sugeno 

approach 

 

al structure for a 

fuzzy controller 

n-well 

technology 

[19] 
Speed, fuzzy 

rules 

CMOS, neuro fuzzy 

approach, defuzzification 
NA 

Analog 

neuro-fuzzy 

controller 

VLSI, neural 

networks 

[46] 

Images, 

neurons, 

speed, 

performance 

FPGA 

Data representation, update 

of weights, nature of learning 

algorithm, design constraints 

and general issues-sigmoid 

and ramp 

Development of 

fuzzy systems, 

neural networks 

and neuro-fuzzy 

systems 

VLSI, CMOS 

technology, 

bipolar device 

technology, 

Xilinx 

[47] 

Throughput, 

local 

interconnectio

ns 

System design 

methodology 
Performance issues 

Fuzzy clustering 

neural network 

model 

VLSI 

[4] 

Neural 

networks, 

weight storage 

Analog type System level issues 

Implementation 

of feed forward 

neural network 

for analog signal 

processing 

CMOS VLSI 

technology 

[5] 
Kernel, 

prototype chip 
Analog type NA 

Model of a basic 

cell for Artificial 

Neural Systems 

VLSI 

[6] Precision 
Circuit implementation, 

analog type 
NA 

Efficient 

Artificial Neural 

Network with 

lesser precision 

VLSI 

[48] 

Scaling, 

tolerance, 

performance 

FPGA NA 

Implementation 

of Neural 

System 

Asynchronous 

VLSI 

[49] 
Complexity, 

speed 

Back propagation 

technique, stochastic 

algorithm 

NA 

Architecture of 

Multi-layer feed 

forward neural 

network 

VLSI 

[7] Neurons CMOS fabrication process NA 

Construction of 

Electronic 

Neural Network 

Analog and 

Digital VLSI 

with micro 

fabrication 

process 

[50] Data rate 

Orthogonal frequency 

division multiplexing, 

inverse fast 

Fourier-transform and side 

lobe suppression method 

NA 

Development of 

a high data rate 

Medical Implant 

Communication 

System 

VLSI 

[2] Power 
RF-front end transmitter, 

body sensor network 

Complexity of human body, 

safety concerns and some 

technological bottlenecks 

MICS band Low 

Power 

Transmitter for 

Medical 

Implantable 

Devices 

Cadence RF 

Spectre tools, 

180nm CMOS 

technology 
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[3] 
Power, data 

rate 
MAC protocol, telemetry Network issues 

MICS network 

implementation 

Communicatio

n networks and 

body sensor 

networks 

[51] 
Frequency 

band, power 

FSK transceiver, ring VCO 

with direct modulation 

System and circuit level 

issues 

Low-Power 

MICS-transceiv

er architecture 

CMOS 

[52] 

Performance, 

capacity 

correlation 

MOS transistors, 

correlation based 

associative memories 

NA 
High capacity 

neural network 
VLSI 

[10] 

Weight, 

accuracy, 

power 

MDAC architecture, 

analog type 
Gain error 

Novel hybrid 

neural network 

multiplier 

architecture 

 

Analog VLSI 

Table 1. Comparison of various VLSI implementation based neural network systems 

      

IV.   Conclusion 

The integrated neural network operating VLSI design with low 

cost, low power and low area are highly necessary in 

biomedical systems. MICS receiver with improved RF circuitry 

is crucial building blocks for auditing, investigation and control 

functions in biogenic appliances. The additional techniques of 

VLSI design include FPGA implementation, neuromorphic 

computing and neuro-fuzzy approach, which are demanding in 

the biomedical application. FPGA performs parallel processing 

with a faster rate. Neuromorphic computing has the key 

feature of good durability. Neuro-fuzzy systems are useful for 

most of the practical medical applications. The literature 

survey and observation table will help the analyst for further 

groundwork in this domain. 
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