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Abstract: Autonomous drones play a vital role in Disaster mit-
igation systems and commercial good delivery systems. The
problem involves finding the shortest path between the deliv-
ery points while simultaneously avoiding stationary obstacles
(for example high raised buildings) and moving obstacles like
other drones. The path needs to be continuously changed based
on the telemetry from other drones or based on the addition of
new way-points. This is major issue in planning problems. Any
algorithm will have to make complex choices like abandoning
shortest paths to avoid collisions. In this paper we propose a
tangent algorithm which chooses paths based on many perfor-
mance measures like number of obstacles in current path and
the future path and the distance to the next obstacle. The path
has very few sharp turns and the locations of these turns are cal-
culated during the path planning. This solves one of the major
problems for fast-moving fixed wing systems.
The performance evaluation on different environments demon-
strates that the algorithm will be particularly faster in case of
sparse obstacles since it always starts first by drawing a straight
line between way-points and if there are no obstacles in the way
then it can exit in a single step.
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I. Introduction

There are a lot of applications of autonomous drones. The
most important one is delivering food or medicine to people
stuck in inaccessible areas due to natural disasters. There are
many other applications like commercial deliveries or mili-
tary surveillance. These tasks can be accomplished faster if
multiple drones are sent together. The drones in this environ-
ment need to avoid each other and other stationary obstacles
and find the shortest path to their next delivery point.
The research that is being dealt with in this composition sur-
rounds path planning and collision avoidance in unmanned
aerial vehicles. Each plane is sent a specific distance from
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the ground station after takeoff and will then orient itself to
travel to the destination point. The focus here surrounds what
happens should there be multiple stationary obstacles like tall
structures or other drones flying around with their own dif-
ferent destinations. In recent times, this subject has become
one of increasing interest to many. As such there are many
preexisting algorithms one can consider but many of these
require high computational power and still do not generate
the most optimal path.
Delivery drones flying over cities will (in most cases) be
flying at a height where not many stationary obstacles like
buildings or trees will be in the way. We may have few no-
fly zones like schools or residential areas where the drone
will have to increase altitude or altogether avoid the area to
prevent discomfort caused by noise from the drone. These
no-fly zones can be modeled as cylinders with their base
on the ground, radius and centre such that the entire area is
covered and a suitable height. Even moving obstacles like
other drones can be also modeled as cylinders centered at
the drone. Most of the time the obstacles will be sparse as
such the tangent algorithm will quickly return the straight
line path in one step. Many of the pre-existing algorithms
like RRT will go through many iterations even if there are no
obstacles in the path, also the path generated by RRT will not
be a straight line and will require smoothing.
The tangent algorithm is much simpler than existing concepts
and generates shorter paths much faster if the area of oper-
ation is huge with sparse obstacles.This algorithm is partic-
ularly suitable for fixed-wing planes that cannot take sharp
turns easily as it creates paths made up of straight lines with
minimal turns. Also, the points with minor bends are stored
during run time and can be smoothed out.
The aim behind the inception of this algorithm is to create a
method for path planning and obstacle avoidance that makes
use of simple geometry like circles and tangents. Therefore,
students with basic knowledge of geometry and recursion can
create working codes autonomous aerial systems. The aim
was also to create an algorithm that can be suitable for fixed-
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wing system as in to generate the shortest path with mini-
mum number of sharp turns in the fewest amount of itera-
tions. Furthermore, we wished to create an algorithm where
decision making process can be customized that is, by the
use of different performance measures and different weights
corresponding to the importance of each performance mea-
sure.
In this paper, we propose a new algorithm for path-planning
and obstacle avoidance and comparison with other path-
planning algorithms. Our main contributions are as follows:

• A new algorithm for path planning and obstacle avoid-
ance in autonomous systems.

• The algorithm uses a speculative approach where it as-
sumes a path and then corrects the path if there is a col-
lision. Simulation results show that it is much faster in
comparison to already existing algorithms like A* and
RRT.

• Amongst all the algorithms mentioned in this paper,
the tangent algorithm generates paths with the fewest
amount of turns and so, will require the least amount
of smoothing. The points where the path takes a turn
are calculated during run-time and can be smoothed in
parallel with the algorithm execution.

• We have implemented the algorithm to decide which
path to take based on three performance measures. The
measures have different weights signifying their im-
portance in the calculation. These measures and their
weights can be easily modified or new ones can be
added in future implementations.

• We have also highlighted some future improvements in
the algorithm with the help of parallel execution using
threads.

II. RELATED RESEARCH

Many solutions have been formulated to both detect and
avoid collisions among UAVs or between UAVs and other
obstacles. These solutions are generally termed as ’algo-
rithms’ because they are a means to accomplishing an end
by following a formulated process. Each of these algorithms
has a different outlook for the problem and therefore its own
benefits and downfalls.[1]

A. Decentralized collision avoidance: A method of collision
avoidance that is more popular in larger and more powerful
unmanned aerial systems. This family of algorithms takes
a more ’divide and conquer’ approach when faced with the
issue of drone navigation. A centralized system acts as
the single control unit that handles all of the navigational
algorithm for all the units. The units (drones or planes),
simply receive commands and go to the specified location.
In a decentralized system, the vehicles have on-board
processing power so they calculate their own paths. Each
unit will either use radars or local broadcast communication
to detect any nearby vehicles. Any impending collisions are
dealt with locally that is, between the two units rather than
on a global scale[11].

1) Generalized Roundabout Policy: This algorithm was
developed using decentralized control[2]. It is a reactive
algorithm which gives each individual plane a disc of
reserved space centered on it. The disc is modeled with
respect to the plane’s maximum turning angle. It is rendered
so that when the plane enters its maximum turn, the center
of the disc does not change position. This means that not
only can the disc change direction of motion as the plane
does, but it is also able to stop moving when the plane starts
circling at its maximum turn angle (drone copters can just
stay stationary mid-air and do not need to circle). When the
plane detects that it is about to enter another planes’s disc
space, it can change direction by circling around in order
to avoid entering the foreign disc space. Sometimes one of
the air-crafts might get caught in between two or more other
air-crafts. When this situation occurs, the central aircraft
can easily halt the motion of its disc and remain in place by
circling inside its disc. It can move again once one or more
of the air-crafts have freed themselves from the situation.

2) Multiple Party Collision Avoidance: Another documented
algorithm that utilizes the divide and conquer approach
is the Multiple Party Collision Avoidance algorithm[3].
Instead of dividing the airspace, this algorithm divides the
air-crafts into a number of groups, or ’parties’. Each party
contains the aircraft that are close to each other and have a
chance of being involved in a collision in the near future.
Every party is assigned a master plane from amongst the
party members. The choice of a master does not affect the
outcome whatsoever as in any plane can become the mas-
ter. The master plane then begins to computes possibilities
of future collisions in the group and attempts to resolve them.

Both the algorithms discussed under Decentralized collision
avoidance are extremely effective in cases of high obstacle
density that is when there are a lot of unmanned aerial
vehicles(UAV) in a tight space. This is because dividing
the problem and computing different components in parallel
will be faster for a large problem, rather than solving the
entire problem linearly. However, decentralizing a system
takes up a lot more computational power than just using a
single central unit and it might not be commercially feasible
to have every UAV fitted with the necessary hardware.

B. Artificial Potential Fields: Artificial Potential Fields
is a reactive algorithm that works based on the behaviour
exhibited by charged particles in nature[4]. The process
involves hypothetically giving each UAV a negative charge,
and the next way-point a positive charge. In this model, all
UAVs will repel each other and simultaneously be attracted
to their way-points. In order to move the UAV, a force vector
that is calculated from the potential field is generated at each
step. The UAV can then applies this force to itself. The main
drawback of this algorithm is the tendency of the UAVs
to get stuck at points of local minima in the potential field
instead of moving to the way-point(global minima).

C. Fuzzy Logic: Fuzzy logic is based on the idea that hu-
mans think in terms of concepts rather than exact numbers.
The inputs are fuzzified, or made more general than specific



Recursive Tangent Algorithm 214

numbers. This involves assigning terms such as Far or Near
for the distance of the UAV from the goal and Negatively
Small or Positively Large for the angle at which the goal is
oriented with respect to the UAV[5]. These terms are then
combined into a single value representing a velocity for the
UAV’s motion. Due to the algorithm’s inexact nature, it
is really important to implement the translation of values
to concepts properly to get accurate results. However,
experiments have shown that it performs well in both static
and moving obstacle environments.

D. A* : A*(A-star) is a preemptive, path generating collision
avoidance algorithm[6]. A* algorithm first divides the
airspace into a grid of squares of same size, also called
’nodes’. The next step is to use a ’branching’ algorithm
to determine the most optimal path for every UAV. This
is done by assigning a cost to every node that the UAV
might pass through in its flight path and estimating the path
with the least cost that is possible using the node under
consideration. The algorithm also makes use of a process
called ’bounding’. This restricts the algorithm to only branch
out paths from the node with the least estimated cost, thus
ensuring that only the most cost efficient path will be chosen.

E. RRT: A rapidly exploring random tree (RRT) is an algo-
rithm designed to efficiently search for way-points by ran-
domly building a space-filling tree[7]. The tree is con-
structed incrementally from nodes drawn randomly in the
search space. The search tree is biased to grow towards large
unexplored areas in the space.

Figure. 1: Pygame Simulation: Comparison between
Tangent algorithm(left) and RRT(right) in situations with
sparse or no obstacles in the way.

Algorithms like Rapidly Exploring Random Tree (RRT) and
A* algorithm take longer time even if there are sparse obsta-
cles as shown in Fig.1 because they are based on randomly
testing out each possibility. The tangent algorithm is a better
solution as it directly tries to draw a straight line and finish
the process, even in case of obstacles it makes minor devia-
tions from the straight line path.
Also paths generated by RRT, A* and other algorithms
that randomly move around may need a lot of smoothening
as the paths are (in most cases) made up of small lines
with different slopes. Each small line shows one decision
made by the agent. But the tangent algorithm only needs
smoothening at a few locations where we draw new tangents
because it directly draws a single big line and tries to reach
the next point in one step. Thus, autonomous drones will be
safer as the chances of having to take sharp turns is less[12].

As can be seen in Fig.1 the RRT agent takes an unnecessarily
longer path because a longer sub-tree happened to reach the
goal first. Also, the path generated by RRT(in red) is not
smooth and straight unlike the tangent algorithm because the
RRT path is made up of small branches.

F. Dynamic Programming (DP)
Dynamic programming breaks down the problem into
multiple related sub-problems. Solving the main problem
requires the solutions from all the related sub-problems. The
solution of sub-problems is stored in a memory structure
for future needs[13]. In regards to UAV path-planning, the
procedure of the DP algorithm is to calculate the distance
to the goal from all the way-points on the map and the
sub-problem is the pre-computed distance to the nearby
way-points. Recurrence relation is a common method for
demonstrating the relationship between a problem and its
sub-problems. DP algorithms are the basis for many types
of algorithms like Dijkstra’s algorithm. In these types of
algorithms, the lowest level or the smallest sub-problem
is considered first, then the algorithm proceeds toward the
higher level sub-problems, the main solution is thus found in
an iterative fashion.

G. Greedy algorithm and Multi-Step Look-Ahead Policy
(MSLAP)
A greedy algorithm is any algorithm that follows the
problem-solving heuristic of choosing the best or locally
optimal solution at each stage with the intent of finding a
global optimum. Greedy algorithms can be characterized
as being ’short sighted’, and also as ’non-recoverable’. For
many other problems, greedy algorithms fail to produce
the optimal solution, and may even produce the unique
worst possible solution. The MSLAP algorithm works by
discretizing the UAV decision tree and then evaluating the
different multi-step UAV path decisions for the most optimal
performance. However, the main disadvantage is that the
problem is NP-hard, this means that the computation time
is highly dependent on the number of decision variables
in the problem. Defining the size of decision possibilities
for the UAV modulates the cardinality of set of decision
variables. The major advantage of this algorithm is that a
sub-optimal solution requires less computation time and
hence is faster when compared to the optimal trajectory
planning methods[14].

The Tangent Algorithm proposed in this paper also follows
the Dynamic programming approach. The algorithm calls
itself and in each call it draws a new tangent based on a
greedy decision to get the best performance measures for
that particular tangent and then passes the results to the next
call. Further in the paper, we also propose a thread based
approach to the tangent algorithm which is entirely based on
dynamic programming where each tangent or sub-problem
is passed on to a new thread.

H. Fringe algorithm
Path-planning solutions that apply fringe algorithms try to
remove inefficiencies by making each data structure iterate
over two sets of data: the frontier and the fringe. This means
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that there will be two sets of lists, one which stores the
current iteration and the other to store the next iteration.
The Fringe algorithm can be shown to accelerate the search
times by 10–40% when compared to the A* path-planning
algorithm[15].

I. Approximate Reinforcement Learning (RL)
Reinforcement learning is an area of machine learning
concerned with how software agents ought to take actions
in an environment in order to maximize some notion of
cumulative reward. Reinforcement learning is one of three
basic machine learning paradigms, along with supervised
learning and unsupervised learning. RL program learns
to take actions with the goal to maximize a reward signal.
The earned reward is the feedback for the next action. The
agent can explore the environment for better path selection
in the future. Value functions, functions of the states and
performance measures estimate the degree of importance
that the agent gives to a particular state [16].

J. Mixed Integer Linear Programming (MILP)
An integer programming problem is a mathematical opti-
mization or feasibility algorithm in which some or all of the
variables are restricted to be integers. In many settings the
term refers to integer linear programming, in which the ob-
jective function and the constraints are linear. Linear pro-
gramming maximizes (or minimizes) a linear objective func-
tion subject to one or more constraints. Mixed integer pro-
gramming adds one additional condition that at least one of
the variables can only take on integer values.
MILP is widely used for mathematical modeling and is
known as a powerful tool for presenting optimal and near-
optimal solutions. Implementation of MILP as a solution
to the UAV path-planning while taking into consideration
the probability of detection of other UAVs in the airspace is
covered in [17].

K. Genetic Algorithm
GAs are search algorithms based on the model of evolution
which seeks to imitate natural selection and survival of the
fittest. Paths (each of which is encoded as a chromosome)
are evolved by the genetic parse trees whose lengths changes
throughout the run-time. The GA optimizes the population
of paths based on the fitness landscape derived by a function
called the objective function. The objective function checks
the fitness for each solution. Different implementations of
gene fitness functions, crossover functions, and mutation
functions will affect the performance of the algorithm.
The algorithm generates an evolution process based on
operations like mutation, crossover and reproduction. The
result is an iterative process where successive populations
are generated until an optimal solution is obtained [18].The
major advantage of using evolutionary algorithms is that the
time of computation is not directly dependent on the number
of constraints.

M. Radmanesh et al., 2018 [9] and M. Radmanesh et al.,
2017 [10] provide advanced mathematical solutions for path
planning, using Bayesian frameworks and partial differen-
tial equations respectively, in uncertain, hostile environments

with multiple drones.
Mohammadreza Radmanesh et al., 2018 [8] is a compara-
tive study of many of the algorithms mentioned above.This
paper tests the performance of each algorithm by comparing
the computational time and solution optimality, and also tests
each algorithm with variations in the availability of global
and local obstacle information.
Most recent works in the field of autonomous drones make
use of the GNSS (Global Navigation Satellite System) and
a compass as the main navigational tools in the drone. [19]
uses an object detection module that helps in identifying
obstacles in the video stream by using a combination of
MobileNet and the Single Shot Detector (SSD) framework
for a fast and efficient deep learning-based implementation
of object detection. The autopilot is implemented using
Erle-Brain 3 which consists of a Linux based embedded
system and an autopilot shield on which the entire system
is designed. (Robot Operating System) ROS and Autopilot
Software are installed on the system. GPS is used to get
information on the current position of the drone. Precise
positional data is necessary to have a smooth navigational
performance. In order to acquire this precise data, a large
amount of satellite data needs to be collected which is why
the use of GNSS and compass that can connect to many
variations of satellites is necessary. The autopilot shield
used in the drone consists of sensors and other essential
components for flying a drone.

Wyder PM et al., 2019 [20] is also a noteworthy work which
focuses on Unmanned Aerial vehicles that autonomously
detect, hunt and take down other small aerial vehicles in
a GPS-denied environment. With the increasing threat of
misuse of drones for privacy violations and military activi-
ties, a drone system to report and neutralize these threats is
necessary. The system proposed in this work detects, tracks
and follows another drone within its sensor range using a
machine learning model that is pre-trained. The target drone
is detected and tracked using the input images captured by
the drone camera. The output bounding box location and
size of the detected drone are sent to the navigation-control
system where the co-ordinates of the target are calculated
with reference to the drone using algorithms such as regional
convolutional neural network.

Islam et al., 2019 [21] proposes a novel mission-oriented
path planning algorithm for multiple Unmanned Aerial Ve-
hicles. In this algorithm, each drone takes autonomous de-
cisions to calculate its flight path towards the target mission
area while avoiding collisions with stationary and mobile ob-
stacles. One potential applications of this algorithm would
be to have a group of drones collectively cover an evolving
forest fire and thus provide firefighters with a virtual reality
model of the area. The main distinction with other algorithms
is that the target destination for each drone is not fixed prior
to take off and the drones position themselves such that they
can collectively cover a time-varying mission area. The al-
gorithm was formulated based on Reinforcement Learning
(RL) with a new method to accommodate continuous state
space for adjacent locations.
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III. Proposed System 1

The Algorithm takes any number of way-points and any
number of cylindrical obstacles. The cylindrical obstacles
are no-fly zones where the drone cannot enter, these cylin-
ders can be used to encompass tall towers or the locations of
other drones so that the drone does not crash into them. The
algorithm starts from the first way-point and if the height
is sufficient it passes over the obstacles to get to the next
way-point. If the obstacle height is significantly higher, then
the cylinders are considered as circles from the top view and
tangents are drawn to the closest circle blocking the way to
the next way-point.

The system will be a goal-based, Utility-based agent which
will have its goal to reach the next waypoint while choos-
ing the path with the least number of obstacles and least
distance. After a waypoint is captured the goal becomes
the next waypoint. The environment is fully observable,
partially cooperative multi- agent, deterministic, episodic,
dynamic and continuous.

Figure. 2: Pygame simulation of the Tangent Algorithm.

The lines drawn in black in Fig.2 are all the unsuccessful
attempts. First the agent tries to reach the target through
a straight path, if an obstacle is detected two tangents are
drawn to that obstacle and the best one is chosen.

This algorithm first selects the tangent which intersects the
least number of obstacles. If the algorithm detects that both
tangents have same number of obstacles then decision is
made by drawing two straight lines from the end of the
tangents to the destination using the two current tangents
and checking their obstacles, if there is still a discrepancy
then decision is made on the basis of the distance between
the end point of tangent and next way-point.

A gap is maintained between the tangent and the obstacle.
The tangent is extended beyond the point of contact with the
circle to prevent the agent from recursively operating on the
same circle as shown in Fig.3.
Once a tangent is chosen, the code recursively draws tangents
on the obstacles lying in its path and after each tangent, again
attempts to reach the way-point through a straight-line path.
The tangent will be extended by a factor directly proportional
to the radius of the obstacle and inversely proportional to the
distance between the start point and the centre of the circle.

Figure. 3: Extension and Gap.

Between the first and second way-point (as can be seen in the
fig.2) the agent has to abandon the shortest path because that
would take the drone out of the boundary set for the flight.
After each iteration, an obstacle or way-point can be added
or removed and the path will be recalculated. This can be
used for moving obstacles. Other drones will constantly send
telemetry to each other, based on the telemetry the agent can
move the circle that represents the specific drone and recal-
culate its path.
So basically, each drone will be encompassed in a cylinder
that other drones cannot enter. Stationary obstacles will also
be modelled in the same way regardless of their shape.

Figure. 4: Decision made based on three measures.

For example in Fig.4 :

1. Draw path AB. Not possible.

2. Draw tangents AT1 and AT2 on the nearest obstacle.

3. Check number of obstacles obstructing AT1 and AT2.
Both are zero.

4. Next check number of obstacles obstructing T1B and
T2B. T1B has zero and T2B has one. So choose T1
tangent.
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5. Since the previous test passed, no need to check for dis-
tance between T1B and T2B.

Encountering less obstacles is given more priority than dis-
tance to maintain completeness. In the case that the way
point is surrounded by obstacles and there is only one small
gap, the drone needs to focus on getting out of the tight situ-
ation even if more distance is covered to get to destination.

IV. Proposed System 2

Alternately, we can ignore the three measures and use threads
to test out every different possibility. Tangents will not be
chosen based on any measures, on the contrary all the tan-
gents will be expanded. Each tangent will call two more
tangents and this process keeps on going until all the paths
reach the destination or quit. Distance will be calculated for
all path and the shortest path will be chosen. This method
takes more time and processing power than the first method
but it ensures an optimal solution. Also, even in the case
where the obstacles touch each other and form a ring around
the start point, only leaving a narrow gap, completeness is
still ensured.

V. Algorithm

The algorithm for the first proposed system will input two
input arrays: waypoint array with each element as a tuple of
x and y coordinate and obstacle array with each element as a
tuple of x,y coordinate and radius.

For each pair of consecutive way-points draw a rectangle
with the two way-points as two diagonally opposite corners.
Increase x-coordinate of 2 rightmost points by diameter of
largest obstacle, Decrease x-coordinate of 2 leftmost points
by diameter of largest obstacle, Increase y-coordinate of 2
topmost points by diameter of largest obstacle, Decrease y-
coordinate of 2 bottom-most points by diameter of largest
obstacle. Thus each consecutive pair of way-points will have
its rectangle. Take each obstacle and if the end points of
its two diameters which are parallel to x-axis and y-axis lie
within the rectangle, then add it to the list.
If we have n way-points then list[n-1] will have each element
as a list of coordinates of the obstacles within the the rectan-
gles.
cor is an array containing the four corners of the boundary.

This algorithm is a two-dimensional simulation. It imple-
ments the concept of adding the gap and extension.But,the
algorithm will not recursively reduce them if there is a
collision because of excessive gap or extension. So we will
choose the smallest possible values for the gap and extension
from the start. The algorithm only takes in circular obstacles.
But, regardless of shape any obstacle can be modeled as the
smallest possible circle that encompasses the entire obstacle.

Algorithm 1 Path planning and obstacle avoidance using tan-
gent algorithm

procedure COLLISION(st, ed)
Satisfy the line between st and ed with each circle in

list[count] and find points of intersection.
closest obs no = circle with point of intersection clos-

est to st point
obs count = Number of circles intersecting
return closest obs no , obs count

procedure TANGENT(st, ed, ob)
Using point st draw two tangents on the obstacle[ob] .

Can use pole polar concept in conics to quickly satisfy the
polar with the circle and get the 2 points

Let the points of contact be s1 and s2.
Add gap:
x = obstacle[ob][0] . x-coordinate of obstacle
y = obstacle[ob][1] . y-coordinate of obstacle
sdx1 = x+1.1*(s1[0]-x) . Equation 1
sdx2 = x+1.1*(s2[0]-x)
sdy1 = y+1.1*(s1[1]-y)
sdy2 = y+1.1*(s2[1]-y)
Add Extension:
d1 = distance between st and (sdx1,sdy1)
d2 = distance between st and (sdx2,sdy2)
r = obstacle[ob][2] . Radius of Obstacle
t1[0] = st[0]+((r+d1)/d1)*(sdx1-st[0]) . Equation 2
t2[0] = st[0]+((r+d2)/d2)*(sdx2-st[0])
t1[1] = st[1]+((r+d1)/d1)*(sdy1-st[1])
t2[1] = st[1]+((r+d2)/d2)*(sdy2-st[1])
return t1, t2

start=waypoint[0]
end=waypoint[1]
count = 0
procedure MAIN()

while start 6= waypoint[n] do
draw straight line between start and end
closest obs no,obs count=collision(start,end)
if closest obs count == 0 then

set straight line as final path
start = end
end = next way-point in the list
count++
restart loop

t1,t2 = tangent(start,end,obs no.)
out of boundary1 = boundary(start,t1,cor)
obs no1,obs count1=collision(start,t1)
out of boundary2 = boundary(start,t2,cor)
obs no2,obs count2=collision(start,t1)
if out of boundary1 == 1 then

if obs count2 == 0 then
Set start to t2 as final path
start=t2
restart loop

else
end = t2
restart loop
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Algorithm 2 Path planning and obstacle avoidance using tan-
gent algorithm (contd.)

procedure MAIN CONTINUED()
while previous while loop continued do

3: Similarly, check is second tangent goes out of
flight-boundary.

if obs count1 ¿ obs count2 then
if obs count2 == 0 then

6: set start to t2 as final path
start=t2
restart loop

9: end=t2
restart loop

else if obs count2 ¿ obs count1 then
12: if obs count1 == 0 then

set start to t1 as final path
start=t1

15: restart loop
end=t1
restart loop

18: else
closest obs no3,obs count3=collision(t1,end)
closest obs no4,obs count4=collision(t2,end)

21: if obs count3 ¿ obs count4 then
if obs count2 == 0 then

set start to t2 as final path
24: start=t2

restart loop
end=t2

27: restart loop
else if obs count4 ¿ obs count3 then

if obs count1 == 0 then
30: set start to t1 as final path

start=t1
restart loop

33: end=t1
restart loop

else
36: Calculate distance between

t1 and end = d1
t2 and end = d2

39: if d1¿d2 then
if obs count2 == 0 then

set start to t2 as final path
42: start=t2

restart loop
end=t2

45: restart loop
else if d2¿d1 then

if obs count1 == 0 then
48: set start to t1 as final path

start=t1
restart loop

51: end=t1
restart loop

else
54: Choose any Tangent

Extension and gap is added by creating vectors and extend-
ing them in the ”Add gap” and ”Add Extension” section of
the first part of the algorithm.

Here, s1 and s2 are the points of contact of the tangent with
the circular obstacle, (x,y) is the center of the obstacle and st
is the start way-point from which the tangents are drawn.

(sdx1,sdy1) and (sdx2,sdy2) are vectors along the center
of the obstacle and the points of contact but, are slightly
larger than the radius, and thus give us the points with gap.
In Equation 1, the vector sdx1 starts at x and extends in
the direction (s1[0]-x) that is, towards point of contact.
1.1 is multiplied to the direction vector to give exten-
sion in that direction. The number after the decimal place
can be increased or decreased to increase or decrease the gap.

Similarly in Equation 2, a vector is created between the start
way-point and the point of contact with gap obtained in equa-
tion 1. The extension factor, 1+(r/d1) is a function of radius
of obstacle and distance between start way-point and point
of contact with gap. This function always returns the best
extension factor as the larger the circle, the larger the exten-
sion required to cross it and if the way-point is very close to
the circle that is, d1 is very small then tangent drawn will be
small and will thus require a larger extension.

VI. Performance Measures

If we impose the condition that more than three obstacles do
not touch or intersect in an arc-like fashion as shown in Fig.5
then the following measures can be calculated.
The black circles represent the obstacles and the red dots are
the way-points. The start way-point is on the left (inner side
of arc).
Completeness: The algorithm is complete. Since the ob-
stacles have gaps between them (assumption, because two
buildings or two drones flying will always have a gap be-
tween them. A tangent can be drawn to pass any obstacle to
reach the goal node.

1. The tangent undergoes a fixed extension based on a
function which is inversely proportional to the distance
between the way-point and the centre of the obstacle
and directly proportional to radius of the obstacle. This
is done to add some distance between the end of the tan-
gent and the obstacle.

2. Also a processor can make rounding errors during cal-
culation and draw the tangent a little inside the obsta-
cle which might lead to mistakes in the obstacle detec-
tion function. So while drawing a tangent we maintain
a small gap between the tangent line and the obstacle to
which it was drawn.
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Figure. 5: Case where first proposed system does not
work.

If the gap between two obstacles is too tight and small then
functions 1 and 2 may cause problems in drawing tangents.
Thus, the code will check if there is any collision in the ex-
tended length in [1] so that the extension can be reduced re-
cursively until it fits. Also, the gap in [2] will be set to a very
minute value.
Optimal-path: The algorithm picks the most optimal solution
based on three performance measures:

1. Number of obstacles intersecting the tangent drawn
from start point.

2. Number of obstacles intersecting the line between the
end point of tangent and goal point that will be drawn
using the tangent chosen in the previous step.

3. Distance between endpoint of tangent and goal point.

The measures are given in order of decreasing priority. Thus,
decision is made not only based on the obstacle count of cur-
rent tangent but also on the future consequences of choosing
that tangent. The algorithm thus chooses the path with least
obstacles. Thus, the algorithm may not give shortest path
all the time. But, the priority of the three measures can be
changed to generate the most suitable result. Therefore, sum
of all three measures multiplied by their priority can be calcu-
lated for each tangent and decision can be made accordingly.
Time Complexity: The algorithm starts by drawing a straight
line between the start way-point and the next way-point to be
captured. If there are no obstacles detected between the two
way-points then the straight line is chosen as the final path
and we move to the next way-point. The time depends on the
number of obstacles. To avoid checking each and every ob-
stacle for an intersection we can create a rectangular area us-
ing the coordinates of every pair of consecutive way-points.
The rectangle will be drawn by taking the two way-points

as corners and while keeping the centre same, increasing all
dimensions by twice the diameter of the largest obstacle. If
an obstacle lies entirely or a part of it lies in the rectangle
then it is added for consideration. This can be done during
start up time that is when the unmanned vehicle is taking off.
Thus, if there are no obstacles in the way no tangents need
to be drawn. Only time required is for checking with each
obstacle in the range if it intersects the straight-line path or
not. Thus, if obstacles in range of the two way-points are ‘c’
in number then the time complexity will be O(c). The num-
ber of obstacles will be a constant because within the fixed
rectangle there will only be space for few obstacles.
Considering the second case that is, when there are obsta-
cles in the way. Consider that there are ‘x’ number of ob-
stacles in the way. After a tangent is drawn to an obstacle,
the end point of the obstacle is again considered as a start
point and the algorithm loops again. Due to the extension
and gap function most obstacles will be bypassed in a single
tangent. Thus, for each tangent it will need to check for col-
lision with all obstacles in range. Therefore, c*x. But there
are 2 tangents for each obstacle. Therefore, 2*c*x. There
is also the feature to check the obstacles in the future path
that is between the end of each tangent and the goal way-
point. Therefore, 4*c*x. Finally, one more check after no
more obstacles are present. Therefore, the final complexity
will be O(c*(4x+1)). Therefore, the best-case complexity is
O(c) and the worst case could go up to O(c2).
The assumption in the first part of this section was made be-
cause the first proposed system might get stuck in an infinite
loop as shown in Fig.6.

Figure. 6: Algorithm gets stuck on obstacle 1 and 2.

1. AB is drawn. Obstacles O1 blocks the path.

2. Draw tangents AT1 and AT2. Choose AT1 because T1
is closer to B.
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3. AT1 intersects O2. Draw tangents AT3 and AT4.
Choose AT3 as T3 is closer to B. O1 is blocking AT3.

4. Again T1 and T2 are drawn and this loop repeats.

A possible solution for this problem is as follows:
An array that stores A,B, obstacles and the two tangent points
for that obstacle(T1 and T2). If T1 is chosen set its flag to
1. This denotes that T1 has been chosen and if the algorithm
comes back here when start and destination are same then we
will choose the other tangent. If we come back to O1, reset
T1 flag and set T2 flag. The algorithm will thus go from O1
to O2 and then back to O1 and then to the obstacle below and
again back to O2 and then O3. AT5 will be chosen and the
oscillation will continue until finally T6 will be chosen and a
path can thus be created.
If we use threads (Proposed system 2) then each tangent is
put into a new thread that is each tangent function will call
two more functions for every obstacle in the path. Each new
call can be put in a thread to process them in parallel. So,
the problem of chain obstacles does not exist anymore.

The algorithm will be complete, since every possible tangent
is expanded.Also, optimal path is obtained as every possible
path is expanded. The total distance of each path can
be calculated while the path is being created and these
paths can then be compared to get the shortest one.The
time complexity will be O(c2) where ’c’ is the number of
obstacles in the region of the two obstacles.

Testing the Tangent algorithm against RRT:
We tested the pygame codes for Tangent algorithm and RRT
in the IPython console and compared their run-time using the
time package in python. Both algorithms were tested for two
way-points and two obstacles.

Figure. 7: Run-times for RRT

RRT is a probability based algorithm. Sometimes, the algo-
rithm gets lucky and a shorter tree is able to reach the next
way-point faster. As such, the algorithm showed run-times
ranging from 1.5 all the way up to 16 seconds when there
were minor changes in the coordinates of the way-points.

Figure. 8: Run-time for Tangent Algorithm

On the other hand, the Tangent Algorithm showed a constant
time of around 0.0019 seconds or less even with major
changes in the location of way-points or obstacles. This
shows that the tangent algorithm is faster and more reliable.
The constant run-times are due to the fact that the same
tangent is most likely to be chosen if there are small changes
in the coordinates of the way-points. All tangents are
checked before one is chosen for the path, so even if a
different tangent is chosen it does not effect the run-time.

The tangent algorithm will give even shorter run-times if
there are no obstacles in the way because of its speculative
approach of always trying the straight line path first. On the
other hand, RRT still takes the same amount of time because
it still generates its random tree and waits for a branch to
reach the next way-point.

Similar comparison with algorithms like A* and other varia-
tions of A* and RRT like D*, IDA* and RRT* have been con-
ducted. The Tangent algorithm displays exponentially faster
times compared to all of these algorithms.
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