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Abstract: This paper analyze the role of adaptive filters for 

monitoring the performance of the wind turbine. Advanced 

adaptive filters are implemented using various algorithms like 

standard least mean square, normalized least mean square, 

generalized normalized gradient descent, weighted least mean 

square, recursive least square, and affine projection algorithms. 

A Comparative analysis is done on the basis of parameters like 

mean absolute error, root mean square error, R-squared (R2) 

score to determine which adaptive filter is suitable for 

estimating wind-power generation. Additional parameters such 

as convergence rate, computational complexity, and stability of 

the system are also analyzed to monitor the performance of each 

filter. Factual power data sets of two different sites are taken 

from resource file of National Renewable Energy Laboratory. 

The comparison is done under similar assumptions on both the 

data sets in order to extract accurate filter performance. 
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I. Introduction 

Wind energy has proved itself an imperative resource in 

power generation. Nowadays, high share of wind energy is 

generated from wind turbines in the energy sectors [1]. There 

are various factors which influence the efficiency of the wind 

turbine in wind-power generation.  Factors such as altitude    

at which the turbine is placed, the layout of the wind farm, 

i.e., air density and temperature of the farm, blade 

aerodynamics of the turbine, integration of generated power 

into grids [2]. This paper focuses on monitoring the 

performance of wind turbine on the basis of total power 

generated from the turbine. Monitoring of generated output 

power is essential because it may inhere a lot of uncertainties 

and deviations. Consequently, power grids’ performance 

may be highly affected. Moreover, energy management 

systems may also expose themselves to some serious issues 

[3]. Subsequently, it becomes necessary to effectively 

integrate wind-power into the power frameworks. Once the 

integration is completed, the performance of the turbine is 

monitored for operational management of wind energy. 

One of the criteria to analyze the performance is to evaluate 

the respective power curve generated by the wind turbine [4]. 

Manufacturers often supply their theoretical power curves 

assuming ideal meteorological and geomorphological 

conditions. These theoretical power curves only offer 

nominal wind-power readings and do not cover all aspects of 

the practical environment. In the real world, wind turbines 

are never subjected to ideal conditions which result in a 

substantial difference between the factual power curves and 

the theoretical ones. This difference in the power curves is 

due to various factors like wind direction, temperature, 

pressure, precipitation, wind velocity distribution, altitudes 

etc. These may act independently or in combination with 

each other effects during wind energy generation [5].  To  

enhance the accuracy  of the generated output power, several 

statistical methods were used to fit the empirical power 

curve of a wind turbine and evaluate total power generated. 

Methods like polynomial regression, locally weighted 

polynomial regression [6], spline regression, and models 

based on probabilistic distributions, logistic distributions [7] 

were used to determine power curve. But these models were 

restricted by their nature and did not solve the problem of 

non-linearity in the data sets. This results in failure and 

estimated power curves were not as close as observed data 

subject to the smoothness of the  fit [8]. To overcome these 

limitations and to enhance the accuracy and quality of the 

power curve other models like fuzzy logic methods, fuzzy 

cluster center models [9], neural networks [10], feed forward 

multi-layer perceptron [11], the k-nearest neighbor [12] 

were preferred as they precisely model a wide range of 

possible shapes of power curves as stated by authors in [7]. 

In research work of M. Morshedizadeh et al. [13], authors 

proposed a model, which preferred the blending of two 

methods: fuzzy logic and neural networks to model the 

power curves. But these methods also face drawback as they 

fail to adapt to changing environment. Practically, there is no 

one technique that could produce least error and overrule all 

others upon every single possible observation which are 

obtained from various wind turbines. It is observed that a 

specific method might be restricted to excel only on few data 

sets, but on alternative data sets, other methods might be 

more applicatory [8]. Moreover, the computational 

complexity is relatively high when statistical methods 

mentioned above were used to fit the power curve of a wind 

turbine. So, another approach called adaptive filters can be 
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used to asses error in wind-power generation. Earlier 

applications of adaptive filters were limited to signal 

processing, channel equalization and identification, 

adaptive feedback cancellation, signal control, prediction etc. 

This paper extends the use of adaptive filters for estimating 

wind-power generation. Because adaptive filters serve best 

when applied in a time-varying environment. This feature of 

adaptive filter is known as online adaptation. A wind turbine 

is always subjected to an environment which changes with 

respect to time. Wind speed, wind direction, air temperature, 

pressure etc. are various parameters which change in 

accordance with time. Thus, adaptive filters applications can 

be used for estimation purposes. In addition, online 

adaptation is nowadays a trending method that is useful for 

batch machine learning algorithms. Its application is 

specially used to sample large databases stochastically and 

finding quick solution subject to least error. Determining 

relevant algorithms which offer a better trade-off between 

computational complexity, convergence rate, and memory 

requirement is a need for today [14]. The adaptive filter is 

one such concept that is preferred for sampling large 

databases over statistical methods described above [15]. 

An adaptive filter is a time-varying filter which modifies its 

coefficients in order to optimize a cost function in accordance 

with the unknown environment. It is additionally used to 

fulfill some predetermined optimization paradigms. These 

filters process the input signals and are concerned with 

following three major parameters: the design of the filtering 

structure, analyzing the input-output signals, and 

implementing a system which changes its structure in 

accordance with incoming signals [16]. It works in online 

mode, i.e., input data arrive continuously with respect to 

time. This scheme is known as time iterative schemes. These 

online algorithms work on single data point at a time. Unlike 

batch processing methods which process the whole block of 

data as a single unit. Another advantage of using online 

algorithms is that they do not require prior knowledge of the 

data set upon which calculation of error takes place. At the 

same time, the computational complexity of these 

algorithms is low as discussed in section III-C. 

The main attribute of the adaptive filter is that it can 

automatically adapt itself to scenarios like when there is a 

change in the environment or when requirements of the 

existing system change with respect to time. Also, these  

filters can be trained to perform particular filtering tasks or 

decision-making tasks based on some set of training 

guidelines or updating equations [17]. Since these 

algorithms work in an online mode they are able to track 

even smallest variations involved during the process. These 

abilities make adaptive filters a compelling device for 

control operations and signal processing. In this paper, we 

focus on online learning techniques for estimating the 

parameters of the unknown system and then monitoring the 

performance of the adaptive filters. In the first stage, we will 

implement adaptive filters using each technique and then 

evaluate the performance of each adaptive filter on various 

parameters. Section II of this paper describes various online 

techniques like - Standard Least Mean Square Algorithm 

(SLMS), Normalized Least Mean Square Algorithm 

(NLMS), Weighted Least Mean Square Algorithm (WLMS), 

Generalized Normalized Gradient Descent Algorithm 

(GNGD), Recursive Least Square Algorithm (RLS) and 

Affine Projection Algorithm (APA). 

II. Advanced Adaptive Filters For Wind-

Power Estimation 

There are numerous cases when fixed specifications of the 

system are unknown or time-invariant filters cannot satisfy 

the given specifications. Under such circumstances, 

adaptive filters have proved to be an asset. In this paper, 

different adaptive filters are implemented based on 

algorithms mentioned in section I [18]. 

An adaptive filter is a data-processing device that enables 

to find the correlation between two signals continuously in 

an iterative manner. Adaptive filters can be one of the 

following: a set of program instructions or set of logic 

operations which run on arithmetical processing devices. 

Additionally, these can be implemented on field - 

programmable gate array or a custom VLSI integrated 

circuit. Purpose of the adaptive filter is to assess the future 

values with respect to the past values of the input signals 

and make the adaptive filter comparable to the unknown 

system[19]. 

Four basic aspects define an adaptive filter. The signals 

that is fed to the filtering structure for producing the output 

signal. The filtering structure that evaluates all the output 

signals  of the filter on the basis of respective the input 

signals; the parameters which change themselves with 

every iteration in order to recalibrate the filter’s input-

output relationship; the adaptive algorithm that describes 

how the parameters will adjust or update themselves from 

one time to time during intervals. Each adaptive filter 

consists of different sets of parameters and algorithms. 

When a specific adaptive filtering structure is selected, the 

number and type of parameters associated with it can be  

modified as per requirement. The adaptive algorithm is also 

used as a form of an optimizer that minimizes the error for 

a particular data set [20]. Each adaptive filter is associated 

with a rate at which the coefficients of the filter converge 

to their optimized values. This rate is known as speed of 

convergence. Speed of convergence varies for each filter 

depending on the algorithm used during the 

implementation of the adaptive filter. Speed of convergence 

depends on various factors such as amplitude and 

correlation statistics of the input-output signals, initial 

weights of the filter,  filter length, step size etc. 

Theoretically, we can assume that the speed of convergence 

increases as the step-size increases. Step-size cannot be 

infinitely increased to achieve higher convergence. There is 

upper bound imposed to the step-size that is half the 

maximum value that is required to achieve the stability of 

the system. Another parameter that affects the speed of 

convergence is the length of the filter L.  Speed of 

convergence is inversely proportional to the length of the 

filter.  As the length of the filter rises, speed of convergence 

decreases [21].   Therefore, L should be chosen as short as 

possible but at the same time long enough to precisely 

model the unknown system.



Wind Turbine Performance Monitoring Using Advanced Adaptive Filters 

 

299 

 

Proper selection of all these parameters is an utmost 

important task while implementing an adaptive filter. The 

elementary structure of an adaptive filter is presented in fig. 

1. Parameters in fig. 1 are defined as follows:  �̂�(𝑘)  =
[𝑢(𝑘), 𝑢(𝑘 −  1), . . . , 𝑢(𝑘 −  𝑝 +  1)]𝑇 is the input signal, 

ℎ(𝑘)  = [ℎ0(𝑘), ℎ1(𝑘), . . . , ℎ𝑝−1(𝑘)]𝑇;   ℎ(𝑘) ∈  𝑐𝑃  is the 

unknown system,  ℎ̂(𝑘)  is the estimated filter which 

estimates the filter after k samples, k is the number of 

current input samples, (. )𝑇  is the (Hermitian or conjugate 

transpose), 𝑒(𝑘) is the error signal, 𝑝  is the order of the 

filter. Weights 𝑤(𝑘)  = 𝑤1(𝑘),𝑤2(𝑘), . . . , 𝑤𝑛  (𝑘)  

corresponds to adaptive filter coefficient vector of size 

𝑁 𝑥 1. Using these parameters various adaptive algorithms 

adjust its coefficients and bring the system as close as 

possible to the unknown system. This section presents the 

general filtering structure of advanced adaptive filters along 

with their implementation for updating the weights after 

every iteration. Thereupon, determining the error form for 

each adaptive filter. 

A. Standard Least Mean Square Algorithm (SLMS) 

The standard LMS algorithm is a class of linear adaptive 

filters. These filters are utilized to produce the desired filter 

after it evaluates the minimum mean square of the error 

signal. The desired filter is produced by finding the filter 

coefficients that identify even unsubstantial variation in the 

mean square error signal. The filter coefficients of the 

algorithm are modified in order to acquire minimum cost 

function[22]. In general, SLMS algorithm performs two 

basic processes filtering process and adaptive process. 

Role of the filtering process is to compute the output signal 

of the filter in accordance with input signals. Once the 

output signal is generated, it is then compared with the 

desired response to estimate net error. The aim is to 

automatically adjust the coefficients of the parameters in 

accordance with the estimated error. Using the parameters 

mentioned in section II, SLMS performs the following 

operations in order to update the coefficients of an adaptive 

filter: Firstly, the output signal  �̂�(𝑘)  from the adaptive 

filter is calculated. Is Using the output signal, the error 

signal 𝑒(𝑘) is calculated using the following equation for  

𝑘 = 0,1,2,… , 𝑘𝑚𝑎𝑥: 

                        𝑒(𝑘) =  𝑑(𝑘) −  �̂�(𝑘)               (1) 

where,  �̂�(𝑘) =   �̂�(𝑘).  �̂�𝑇(𝑘)  and 𝑑(𝑘) = 𝑦(𝑘) +
 𝑣(𝑘) Is the desired signal. Then, following equation is 

used to update the filter coefficients over the iteration:   

        �̂�(𝑘 + 1) =   �̂�(𝑘) + 𝜇. 𝑒(𝑘).  �̂�(𝑘)           (2) 

 

where,  �̂�(𝑘 + 1) represents the weights vector at 

instance +1,  �̂�(𝑘), is the coefficients vector of the filter 

at the instant 𝑘, and  �̂�(𝑘)  is the input vector stored in the 

delayed line of the filter, 𝑒(𝑘) corresponds to the error 

signal of the filter, 𝜇 is the step-size of the adaptive filter 

(also known as the convergence factor) and referred to as 

Widrow-Hoff rule named after its founders[23]. An 

increment of 1 is seen in the time-index of the coefficient 

vector after it is updated, it states that sample-by-sample 

update is performed over iterations. The convergence 

factor µ determines how close the algorithm has converged 

towards the solution. Inverse relation exists between the 

convergence factor µ and the minimal error. On the other 

hand, this factor µ  is directly proportional to the 

convergence speed [24].  

 In LMS, 𝜇 is constant so whenever new input data comes 

it tries to update the estimates in order to produce small 

values of error. As observed, exact values of estimation 

cannot be used while applying LMS algorithms. That is 

why optimal weights are not achievable in an absolute 

sense. However, LMS algorithms converge to mean value. 

This property helps to achieve optimal weights, even-

though, the change in weights is very small. When the 

change in weights is large, a problem of variance arises. 

Then convergence towards mean value can be misleading. 

Thus, proper selection of variable parameter is necessary. 

An upper bound and lower bound is given to step-size 𝜇 

and is called condition of convergence, defined as follow: 

                                  0 < µ <
2

𝜆𝑚𝑎𝑥
                             (3) 

where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue in the auto- 

correlation matrix which contains only non-negative eigen-

values. The algorithm becomes unstable if µ  does not 

satisfy the relation in (3). Also, by analyzing the relation in 

(3) we can conclude that inverse relationships exist 

between the convergence speed of the algorithm and the 

eigen value spread of the correlation matrix. 

Therefore, slow rate of convergence is seen when the eigen-

values of the correlation matrix are widespread. Eigen value 

spread function is evaluated by taking the ratio of the 

largest eigen value to the smallest eigen value. This eigen 

value spread function basically denotes required time for 

the 𝑘𝑡ℎ  mode to reach 1/𝑒  of its initial value [25]. The 

choice of µ  is the deciding factor for calculating 

convergence speed. When µ  is small then convergence 

takes place slowly. When the value of µ is large then, a fast 

convergence of the algorithm is seen. However, upper 

bound of the µ should always be taken into consideration 

as the algorithm may tend to move to an unstable state if µ 

is high. To improvise the stability of the algorithm, max 

achievable convergence speed is given by: 

                                   𝜇 =
2

𝜆𝑚𝑎𝑥+𝜆𝑚𝑖𝑛
                                      (4)   

 where 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥  are the smallest and largest eigen 

values of the function respectively. Hence, faster 

convergence is achieved when 𝜆𝑚𝑎𝑥  is close to or equal to 

𝜆𝑚𝑖𝑛. This can also be represented in the form : 

Figure. 1: A typical Block Diagram Of Adaptive 

Filter 
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                                          ±
𝜌−1

𝜌+1
                                               (5)   

where,  𝜌 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
.  Thus, maximum convergence speed 

is solely dependent on the spread of the eigen values of the 

covariance matrix. When it comes to storage requirement 

it takes small memory footprint as it stores the present 

weight of the filter only. So, this makes LMS compatible 

for use in non-stationary environments as well as online 

settings [26]. Its faster computation gives reasonable 

results. Moreover, it can be used for more complex models 

where there are more error fluctuations. 

B. Normalized Least Mean Square Algorithm (NLMS) 

To eliminate the drawbacks of standard least mean square 

algorithm (SLMS), NLMS algorithm comes into play. 

SLMS algorithm is easily affected whenever its input 

signals are calibrated. This causes difficulty in choosing 

appropriate learning rate µ.  NLMS is the mutated form of 

the standard LMS algorithm [27]. When the new input data 

arrives, the parameters of an adaptive system are 

distributed in a least possible manner. There are two 

integral aspects of the NLMS algorithm. Firstly, if large 

amount of fluctuations are observed in the power levels of 

the input signals, its repercussions are compensated at the 

adaptation level. Secondly, if input signals have large input 

vector length its effect is compensated by decreasing the 

step size of  the  adaptive  algorithm  [28]. For  a  given  

input  signal  �̂�(𝑘)  = [𝑢(𝑘), 𝑢(𝑘 −  1), . . . , 𝑢(𝑘 −  𝑝 +
 1)]𝑇  where  𝑝 is the order of the filter; this algorithm uses 

the following equations to update its coefficients: 

         �̂�(𝑘 + 1) = �̂�(𝑘) + µ. 𝑒(𝑘)
�̂�(𝑘)

[||�̂�(𝑘)||]
2            (6) 

Numerical difficulties may arise if �̂�(𝑘) is very close 

to zero, to overcome this a constant 0 < 𝑎 < 1 is 

used: 

   �̂�(𝑘 + 1) = �̂�(𝑘) +
µ

𝑎 + [||�̂�(𝑘)||]
2  . 𝑒(𝑘)�̂�(𝑘)      (7)     

In NLMS, 𝜇 the adaptation constant is dimensionless. On 

the other hand in LMS, the adaptation constant has the 

dimensioning of an inverse power. 

Substituting 𝜇(𝑘) =  
µ

𝑎+[||𝑢(𝑘)||]
2   in (7), the above 

equation becomes: 

                  �̂�(𝑘 + 1) = �̂�(𝑘) + 𝜇(𝑘) . 𝑒(𝑘)�̂�(𝑘)             (8)  

Here, (8) illustrates that the NLMS algorithm becomes the 

same as the SLMS algorithm. The only differentiable factor 

here is time-varying step size µ(k). It is also known as data- 

dependent adaptation step size. Proper selection of µ is 

necessary to get best results. Theoretically, it is also 

observed that proper selection of µ while implementing 

NLMS filter can show faster convergence than LMS 

adaptive filter.  Hence, lower bound and upper bound is 

given to the dimensionless constant 𝜇 ∈ (0,2) . Such 

modifications and constraints in step size and weight vector 

help in achieving high convergence speed and thus, making 

NLMS flexible to adaptation. With all these advantages 

NLMS also have some drawbacks. For instance, it shows 

slow convergence  for colored input signals.  To ameliorate 

these issues a class of equivalent algorithms has been 

proposed such as the Generalized Normalized Gradient 

Descent Algorithm (GNGD), the affine projection algorithm 

(APA) [29] which is briefly discussed in section II-C and II-

F. 

C.  Generalized Normalized Gradient Descent 

Algorithm (GNGD) 

GNGD algorithm is the abbreviation of a generalized 

normalized gradient descent algorithm which represents a 

special type of variable regularized NLMS. This algorithm 

was proposed to overcome the limitations of least mean 

square based algorithms. Limitations like LMS based 

algorithms require prior knowledge of the eigen values of 

the correlation matrix of the input signal in order to show 

good performance. But in real world scenario it is not 

feasible to keep record of such information. Secondly, 

NLMS shows slow convergence when subjected to colored 

input signals. GNGD is one such algorithm which when 

given such input signal sit shows fast convergence and small 

steady-state mis-adjustments when regulated in stationary 

backgrounds [30]. On the other hand in non-stationary 

background GNGD adjusts its learning rate as per the 

subjected input signal and try to achieve better performance 

than other least mean square based algorithms. GNGD 

algorithm has additional gradient adaptive term in the 

learning rate on the contrary with NLMS’s learning rate 

equation. Because of this additional term in GNGD, this 

algorithm is able to adapt its learning rate with the dynamics 

of the input signal vector. GNGD in its general form is 

defined as follows[31]: 

 

                  �̂�(𝑘 + 1) = �̂�(𝑘) + 𝜇(𝑘) . 𝑒(𝑘)�̂�(𝑘)             (9)  

where, 𝑒(𝑘) =  𝑑(𝑘) − 𝑤𝑇(𝑘)�̂�(𝑘)  is the estimation 

error for time index 𝑘, 𝑑(𝑘)  is the desired signal, 𝑤(𝑘 +
1) and 𝑤(𝑘) are the adaptive filter coefficients vectors at 

time 𝑘 + 1  and 𝑘  respectively. GNGD algorithm has 

modified µ(𝑘) defined as: 

                         µ(𝑘) =  
µ

[||�̂�(𝑘)||]
2
+  𝛿(𝑘)

                   (10) 

where, 𝛿(𝑘)is the regularization factor which is added to 

avoid divisions by zero or very small numbers, µ is the 

normalized step-size with value ranging from 0 to 2, i.e., 

0 < µ < 2, ||�̂�(𝑘)|| is a vector containing the length of k 

recent samples of the input signal. Now using stochastic 

gradient method 𝛿(𝑘)  is made gradient adaptive by 

following equation: 

                  𝛿(𝑘) =  𝛿(𝑘 − 1) −  𝜌∇𝛿(𝑘−1)𝐽(𝑘)               (11) 

where, 𝜌 is the step size parameter for the adaptation of the 

regularization factor with range 0 < 𝜌 < 1 and 𝐽(𝑘) is the 

cost defined as follows: 

                                 𝐽(𝑘) =  𝑒2(𝑘)                                      (12) 

To evaluate the value of  𝜌∇𝛿(𝑘−1)𝐽(𝑘), chain rule is used as 

follows[30]: 
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𝜕𝐽(𝑘)

𝜕𝛿(𝑘 − 1)
=  

𝜕𝐽(𝑘)

𝜕𝑒(𝑘)
 
𝜕𝑒(𝑘)

𝜕𝑦(𝑘)
 
𝜕𝑦(𝑘)

𝜕�̂�(𝑘)

𝜕�̂�(𝑘)

𝜕µ(𝑘 − 1)

𝜕µ(𝑘 − 1)

𝜕𝛿(𝑘 − 1)
 

 

                       =  
𝑒(𝑘)𝑒(𝑘 − 1)𝑢𝐻(𝑘)𝑢(𝑘 − 1)

    (||µ(𝑘 − 1)||
2
+  𝛿(𝑘 − 1) )

2            (13) 

 

Now substituting the value from equation (13) to equation 

(11). Updated equation of 𝛿(𝑘) is formulated as: 

            𝛿(𝑘) = 𝛿(𝑘 − 1) − 𝜌 𝑢0
𝑒(𝑘)𝑒(𝑘−1)µ𝐻(𝑘)𝑢(𝑘−1)

    (||µ(𝑘−1)||
2
+ 𝛿(𝑘−1))

2    (14) 

Equation(14) uses previous values of 𝑒(𝑘 − 1)  and 𝑢(𝑘 −
1) so initialization of these parameters should be properly 

accounted at time index k = 0. Also an assumption follows 

that for 𝑘 ≤ 0  ,value of input signal 𝑢(𝑘) = 0 . Thus, 

initial input signal vector 𝑢(0) = 0. Another assumption 

that follows is 𝛿(1) = 𝛿(0) . Due to this assumption, 

updation of the regularization factor 𝛿(k) is postponed till the 

second step of the algorithm. As a caution, the value of 𝛿(k) 

should be a very small positive number in order to avoid 

division by zero during first few iterations as input signal may 

not be present. The initial value for 𝑒(0) can be set to zero to 

simplify the initial calculations of the regularization factor. 

Another highlighting feature of GNGD algorithm is that it 

does not need any prior knowledge of the correlation matrix 

of the input signal. Also, it robustly shows variations in the 

initialization of its parameters. This robustness and improved 

stability make this algorithm ideal for working in a non-

stationary environment. Although when the computational 

aspect is considered, GNGD shows high computational 

complexity with respect to other least mean square based 

algorithms due to obvious reasons. Reasons like additional 

stabilization term called regularization factor and 

multiplication calculations of 𝑢𝐻(𝑘)𝑢(𝑘 − 1)  [32]. 

Nevertheless, these product evaluations can be computed in a 

recursive manner that can help decrease computational 

complexity up to a point. 

D.  Weighted Least Square Algorithm (WLMS) 

When adaptive filter is produced using least mean squares 

algorithm, an assumption follows that variance in errors is 

constant over the time. This is known as homoscedasticity. In 

other words,  each value in the data-set is treated  with equal 

weight. Despite the fact that some values of variables may be 

more likely accountable while calculating error. Thus, 

weighted least square algorithm is used when there is 

voilation in the assumption of constant variance in the errors. 

The term heteroscedasticity is used which represents non-

constant variance. That is, few values in the dataset has more 

weightage with respect to other values in the same dataset 

[33]. A normally distributed weight matrix with mean vector 

0 and non-constant variance-co-variance is shown below: 

[
 
 
 
𝜎1

2 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮
0

⋮
0

⋱ ⋮
⋯ 𝜎𝑛

2]
 
 
 
 

Assuming 𝑉𝑎𝑟(𝜀𝑖) =
𝜎𝑖

2

𝑤𝑖
 for known 𝑤𝑖 , 1 < 𝑖 < 𝑛.  Let 

matrix W be a diagonal matrix of N x N containing weights: 

[

𝑤1 0 ⋯ 0
0 𝑤2 ⋯ 0
⋮
0

⋮
0

⋱ ⋮
⋯ 𝑤𝑛

] 

Now, the equation of weighted least square is given below: 

                                           𝑦𝑖 = 𝜇 ∙ 𝑥𝑖
𝑇 + 𝜀𝑖                      (15) 

where 𝜀𝑖  is assumed to be non-constant variance-co-

variance matrix and normally distributed with mean vector 

0, 𝜇 represents the weighted least square estimate which is 

calculated by minimizing the error 𝜀, 𝑦 is the responses that 

reflect in the data set. To proceed with the minimization, let: 

                            𝑦𝑖
∗ = √𝑤𝑖𝑦𝑖    &    𝑥𝑖

∗ = √𝑤𝑖𝑥𝑖               (16)   

Then eq. (15) can be written as: 

                                   𝑦𝑖
∗ = 𝑥𝑖

∗𝑇𝜇 + √𝑤𝑖  𝜀𝑖                         (17)   

where  𝑉𝑎𝑟(√𝑤𝑖  𝜀𝑖) = 𝑤𝑖𝑉𝑎𝑟(𝜀𝑖) =  𝜎2   To evaluate the 

weighted least square estimate minimize the error: 

                                   𝑆 =  ∑𝑤𝑖(𝑦𝑖 − 𝑥𝑖
𝑇𝜇)2                    (18)

𝑛

𝑖=1

 

In a matrix form value of the weighted least square estimator 

of 𝜇 for overall model is defined as: 

                               (𝑌 − 𝜇 ∙ 𝑋)𝑇𝑊(𝑌 − 𝜇 ∙ 𝑋)                   (19) 

where, 𝑊  is a diagonal matrix mentioned above. Now, 

taking the derivative with respect to 𝜇,  the solution is: 

                                    𝜇 = (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑌                      (20) 

According to equation (20), inverse relation exists between 

weights and error variance which clearly reflects the 

information in particular set of observations. Therefore, an 

observation with large weights will have small error 

variance since it contains relatively more information than 

an observation with small weights and large error variance. 

It is useful in cases where some observations need to be 

omitted. This can be simply done by setting its weight to 

zero. Moreover, it helps to suppress the outliers in order to 

curtail their impact on the filter. In small datasets, WLS 

works best in retrieving maximum information. It is the only 

method that can be applied to datasets where data points are 

of varying quality. However, application of this requires the 

exact knowledge  of the weights, which is not always 

feasible [34]. Estimating the weights may give 

unpredictable results, especially in small data sets. So, this 

technique should only be used when the weights estimates 

are accurate and precise. 

E.  Recursive Least Squares (RLS) Algorithm 

RLS is also a class of adaptive filter. RLS filters recursively 

find the coefficients relating to the input signals. The 

objective of this algorithm is to minimize the cost function. 

This is done by selecting the filter coefficients judiciously 

and updating the filter with new incoming data. For updating 
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the old estimates, recommended initial conditions are taken 

into consideration along with the information contained in 

new data samples. The RLS algorithms work best in time-

varying environments or non-stationary environment but 

this algorithm leads to higher computational complexity and 

stability problems. In RLS, the input vector is 

simultaneously given to traversal filter unit as well as to the 

adaptive weight control mechanism unit. Once the output is 

generated, it is matched with the desired response to 

evaluate the error. This error is then fed into adaptive weight 

control mechanism unit where it is recursively called till 

stability state is achieved [35]. 

There are two main reasons to use RLS: a) when the number 

of variables in the linear system exceeds the number of 

observations, under these circumstances the ordinary least-

squares problem becomes ill-posed which makes it 

impossible to fit as infinitely many solutions are obtained for     

optimization. RLS algorithm enables to overcome this 

limitation by introducing further constraints that uniquely 

determine the solution. b) Whenever learned model suffers 

from poor generalization RLS comes into play. Poor 

generalization can occur even when the number of variables 

does not exceed the number of observations. RLS is one 

such algorithm which put constraints at training time in 

order improve the generalization ability of the model [36]. 

Although, RLS algorithms do not put constraints on the 

input data structure. As a result, the computational 

complexity of the RLS algorithms increases and is 𝑁2 per 

iteration where 𝑁 is the size of the data matrix. To solve 

RLS, a weighting factor is introduced to the sum of errors-

squares definition: 

                         𝜉(𝑘) = ∑𝛽(𝑘, 𝑖)|𝑒(𝑖)|2
𝑘

𝑖=1

                      (21) 

where, weighting factor has the property 0 < 𝛽 ≤ 1 for 

𝑖 = 1,2,… , 𝑘. This weighting factor is used to ensure that 

less weight is given to older error samples, so that 

statistical variations in the data-set can be observed more 

easily when the filter operates in the non-stationary 

environment [37].In other words, more emphasis is given 

to newer input sample. The most familiar weighting 

factor is called exponential weighting factor or forgetting 

factor. It is defined as  𝛽(𝑘, 𝑖) = 𝜆𝑘−𝑖  for 𝑖 = 1,2,… , 𝑘 

where, 𝜆 is a positive constant, 0 < 𝜆 < 1. The filter tap 

weight vector for this algorithm is updated using 

following equations: 

                 �̂�(𝑘) = �̂�(𝑘 − 1) + 𝐾(𝑘) ∙ �̂�𝑘−1(𝑘)            (22)     

                      𝐾(𝑘) =
𝑋(𝑘)

λ + 𝑢𝑇(𝑘)𝑋(𝑘)
                           (23) 

 

                          𝑋(𝑘) = �̂�λ
−1(𝑘 − 1)𝑢(𝑘)                        (24) 

 

where, λ is a small positive constant whose value is close 

to 1 but not equal to 1. Eq.(23) and (24) are the intermediate 

gain vectors which compute tap weights. Applying the 

filter tap weights of above mentioned iteration and the 

current input vector, the output of the filter is calculated in 

(25) and (26). 

                         �̂�𝑘−1(𝑘) = �̂�𝑇(𝑘 − 1)𝑢(𝑘)                      (25) 

                         �̂�𝑘−1(𝑘) = 𝑑(𝑘) − �̂�𝑘−1(𝑘)                      (26) 

where �̂�𝑘−1(𝑘)  represents output of previous samples 

and  �̂�𝑘−1(𝑘)   is the error for instance (𝑘 − 1) . RLS 

algorithm requires higher memory necessities during its 

execution as it uses the estimate of previous sample of error 

signals, output signals, and filter weights. Another 

highlighting feature of RLS algorithm is that, when this 

algorithm is implemented it enables evenly distribution of 

computational load in each iteration. Also, RLS algorithm 

is not suitable for online filtering due to time consuming 

computations of inverse matrix least squares methods. This 

is one of the limitation of implementing adaptive filter 

using RLS algorithm. 

F.  Affine Projection Algorithm (APA) 

Affine projection algorithms are also introduced to 

overcome the drawbacks of least mean square based 

algorithms [38]. These algorithms belong to data reusing 

family, i.e., past data is used at every instant of time. This 

reusability of  past data ensure that the algorithm learns and 

adapt itself   at a faster rate. Affine Projection algorithm is 

also recognized as the extensive version of NLMS 

discussed in section II-B. NLMS is scrutinized as one-

dimensional projection whereas APA projections are made 

in multiple dimensions. In other words, the filter update 

equation of affine projection uses N vectors of input signal 

instead of using uni-vector input signal. This is called N 

projection order. The greater value of N , i.e., high 

projection order results in the high convergence speed of 

the weight vector.  On the contrary,  to least Mean Square 

algorithms which show slow convergence speed. Thus, the 

performance of LMS based adaptive algorithms can be 

improvised using the applications of affine projection 

algorithms. Especially in cases where input-data is highly 

correlated [29]. Projection order N is also one of the 

significant parameters for determining the computational 

cost of the APA. 

In this algorithm, high convergence speed can be achieved 

but at the same time, the computational complexity of the 

algorithm also increases. Computational cost and its steady- 

state behavior are solely dependent on the initial 

configuration of the system, especially its projection order 

N . Hence, proper selection of projection is important to 

attain meaningful computational savings. Many versions of 

affine projection have been implemented so far. Algorithms 

such as Fast APA, Gauss-Seidel pseudo APA, Dichotomous 

Coordinate Descent APA, Variable Order APA [39]. Each 

version is different from one another and contains its own 

characteristic parameters. One such parameter for creating 

these versions is the weight updating equation which uses 

multiple or delayed input signal vectors. In the 

implementation of APA, N input data vectors used for 

updating filter weights which are not necessarily the recent 

N input signals. Thus, using various combinations of order 

N  of input signals different versions of affine projection 

algorithms can be implemented[40]. Algorithms such as the 

partial rank affine projection algorithm abbreviated as PRA 

[41], the NLMS with orthogonal correction factors 

abbreviated as NLMS-OCF [42], affine projection 
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algorithm with regularization abbreviated as R-APA [43], 

Levenberg    Marquardt regularized APA abbreviated as 

LMR- APA [44] etc. 

One of the most commonly used version is standard affine 

projection algorithms abbreviated as APA which is 

discussed in this paper. Two basic equations are used to 

define APA algorithm as follows [38]: 

                                    𝑒𝑘 =  𝑠𝑘 −  𝑈𝑘
𝑇 . 𝑤𝑘−1                       (27) 

                    𝑤𝑘   =  𝑤𝑘−1 + 𝜇. 𝑈𝑘[ 𝑈𝑘
𝑇 . 𝑈𝑘  ]−1. 𝑒𝑘           (28) 

where, superscript T denotes transpose, 𝜇  is the variable 

parameter which will be optimized in section III-C,  𝑒𝑘 is the 

error vector of length N and  𝑠𝑘 is system output, 𝑤𝑘 is the 

adaptive tap weight vector of length k, 𝑈𝑘is the excitation 

signal matrix of size L×N where k is the index and has the 

following structure: 

 𝑈𝑘 = [𝑢𝑘, 𝑢𝑘−1 , … , 𝑢(𝑘−(𝑁−1))] =

[
 
 
 

∝𝑘
𝑇

∝𝑘−1
𝑇

⋮
∝𝑘−𝐿+1

𝑇 ]
 
 
 

   

and   𝑢𝑘 = [𝑢𝑘, 𝑢𝑘−1 , … , 𝑢(𝑘−(𝐿−1))]
𝑇

 is the L length 

excitation vector with time index equal to k,  ∝𝑘=

[𝑢𝑘, 𝑢𝑘−1 , … , 𝑢(𝑘−𝑁+1)]
𝑇

is the N length excitation vector. 

Adaptive tap weight vector is defined as  𝑤𝑘 =
[𝑤0,𝑘, 𝑤1,𝑘 , … , 𝑤𝐿−1,𝑘] where  𝑤𝑖,𝑘  is the ith tap at sample 

period k. There may be cases when  𝑈𝑘
𝑇 . 𝑈𝑘 matrix have 

eigen values close to zero. This condition will cause 

difficulty in finding the inverse. To avoid such uncertainties, 

𝛿𝐼  term is added to  𝑈𝑘
𝑇 . 𝑈𝑘 . The term  𝑈𝑘

𝑇 . 𝑈𝑘 +  𝛿𝐼  has 

smallest eigen value for 𝛿 which is large enough to produce 

well mannered inverse. Updated equation for 𝑤𝑘  is given by: 

                𝑤𝑘   =  𝑤𝑘−1 + 𝜇. 𝑈𝑘[ 𝑈𝑘
𝑇 . 𝑈𝑘  +  𝛿𝐼]−1. 𝑒𝑘    (29) 

If N is set to 1, then Eq. (27) and (28) can be reduced to 

NLMS algorithm described in section II-B. Moreover, the 

stability of APA algorithm is seen for  0 < 𝜇 < 2 which is 

also similar to NLMS algorithm. Thus, it can be concluded 

that APA algorithm is the generalized version of NLMS 

algorithm. When complexity is calculated it is seen that 

affine projection algorithms have high complexity with 

respect to other least mean square algorithms. This is 

because of the various operations performed over the matrix. 

Operations like matrix inversion that alone gives 𝑂(𝑛3) as 

the computational complexity [45].  Another distinguishing 

characteristic is that 𝑘𝑡ℎ   order APA adaptive filter try to 

minimize the previous 𝑘 instantaneous errors by appropriately 

selecting the weight 𝑤𝑘 . Unlike, least mean square algorithm 

based adaptive filters which focus on minimizing the 

instantaneous error 𝑒𝑘. 

III. Real Data Application 

A.   Description data datasets\ 

For experimental purpose, two data sets  are  taken  from 

the resource file of National Renewable Energy Laboratory 

(NREL), which specializes in renewable energy efficiency, 

research, and development. Data-set A and data-set B 

corresponds to site IDA 124693 and site IDB 126541 

respectively. Geographical location of the site IDA is 

longitude:-120.005463 and latitude: 46.901657 with an 

average wind speed of 6.744 m/sec. Site IDB has longitude: 

-123.375778 and latitude: 48.64072 with an average wind 

speed of 5.296 m/sec. NREL obtained all these 

observations from SCADA (supervisory control and data 

acquisition) system’s wind plant which is located at height 

of 100 meters. Both the data sets have approx. hundred 

thousand entries. Each entry in both data set is recorded 

every 5 minutes. These entries include attributes like Year, 

Month, Day, Hour, Minute, power (in Mega Watts), wind 

direction at 100m (deg), wind speed at 100m (m/s), air 

temperature at 2m (K), surface air pressure (Pa) and density 

at hub height (kg/m3). The observation period for wind-

power data-set is from January 2012  to December 2012. 

As a matter of fact, data collection methods have few loop 

holes. This may result in out of range values. Cases like 

data points with negative or zero power values, missing 

values, inconsistent data combination such as data points 

with high wind speed producing low power values and vice 

versa. Using unclean data set can lead to misleading results. 

Therefore, before implementing the adaptive filters both 

the data-sets are pre-processed one by one. Pre- processing 

is done using inbuilt libraries and tools. Once the pre-

processing is completed cleaned data sets A and B are 

obtained which are used to monitor the performance of the 

adaptive filters. 

B. Parameters for error evaluation 

In order to evaluate the performance of all the algorithms 

discussed in section-II, few measures are used to compare 

their performance. These expressions will help to assess the 

adaptive filters on the basis of goodness of fit parameters 

and will help to verify the accuracy of the filter with respect 

to the particular algorithm. Let us assume a scatter plot of 

k points, where point t has coordinates (𝑦𝑡 , 𝑥𝑡) . 

Expressions for evaluation purpose are as follow: 

                            𝑀𝐴𝐸 =
1

𝑘
∑ |𝑦𝑡−𝑥𝑡|                        (30)

𝑘

𝑡=1

  

                          𝑅𝑀𝑆𝐸 = √
1

𝑘
∑(𝑦𝑡−𝑓𝑡)2

𝑘

𝑡=1

                  (31) 

                           𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑓𝑡)

2𝑘
𝑡=1

∑ (𝑦𝑡 − 𝑦𝑡𝑚)2𝑘
𝑡=1

              (32) 

where, MAE is mean absolute error, RMSE is root mean 

square, R2 is R-squared value, yt  is the actual wind power at 

time t, xt is the value corresponding to respective yt in the 

plot, ft  is the estimated value of the power at time t and ymt 

is the mean of actual wind power for k samples. All these 

evaluation expressions together can be used to estimate 

goodness of the fit of the adaptive filter. MAE helps to 

clearly interpret  the difference between the absolute 

values of yt and xt with respect to time t. It gives the 

absolute vertical distance between each point and Y=X 

line. RMSE is the standard deviation for the errors 

accounted during estimation. 
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Basically, it represents the standard deviation of the 

difference between observed values yt and estimated 

values ft. It also determines the intensity with which the 

data set is concentrated around the best fit line. It also acts 

as a measure of accuracy and helps to compare estimation 

errors of various models for a particular data set and not 

between two or more data-sets. MAE and RMSE both are 

directly proportional to the error. The lesser values of 

MAE and RMSE means lesser the error while estimating 

wind-power energy. 

On the other hand, inverse relation exists between R2 score 

and error ,i.e., a larger value  of R2 score means good fit with 

least error values. It determines how closely our model fits  

a particular dataset. Value of R2 score lies between 0 and 1. 

Zero value of R2 score means that the response variable does 

not move around its mean. In other words, a higher value of 

R2 the better an algorithm fits the data set. Theoretically, 

negative values of R2 does not exist. But in practical scenario, 

when an algorithm fails to fit a data set negative values of 

R2 can be observed. R2 score have certain limitations too. 

There are certain cases where low R2 values do not 

necessarily mean a bad fit and similarly, high R2 values do 

not necessarily mean a good fit. So, to fairly check the 

performance of the algorithms all the measures discussed in 

equation (30), (31), and (32) respectively are taken together 

and tabulated in table (1) and table respectively. After 

obtaining the statistical values from the table (1) and table 

(2), all the algorithms are also visually represented. Figure 

(2) and (3) shows the plot between error and data points for 

all adaptive filter algorithms for both datasets. Error on the 

Y-axis and Data points on the X-axis. Each plot shows visual 

representation between ”Actual Value Plot” and ”Prediction 

Plot”. Actual value plot i.e. actual data points are represented 

using a blue color line. On the other hand, the predicted plot 

is made using a red line. Each plot helps understand how 

close the algorithm is fitting the actual value plot. 

(a) LMS (b) NLMS (c) GNGD 

(d) WLMS (e) RLS (f) AP 

S. 

No. 

Algorithms µ MAE RMSE R2 Rank  S. 

No. 

Algorithms µ MAE RMSE R2 Rank 

1. SLMS 0.00001 1.994 2.298 0.684 3  1. SLMS 0.00001 1.994 2.298 0.684 3 

2. NLMS 0.0001 2.678 4.037 0.431 5  2. NLMS 0.0001 2.678 4.037 0.431 5 

3. GNGD 0.0001 2.698 4.082 0.418 6  3. GNGD 0.0001 2.698 4.082 0.418 6 

4. WLMS 0.00001 1.994 2.288 0.841 2  4. WLMS 0.00001 1.994 2.288 0.841 2 

5. RLS 1 1.961 2.173 0.852 1  5. RLS 1 1.961 2.173 0.852 1 

6. AP 0.1 2.613 3.659 0.548 4  6. AP 0.1 2.613 3.659 0.548 4 

 
  Table 1: Comparison of Adaptive Algorithms for dataset A     Table 2: Comparison of Adaptive Algorithms for dataset B 

Figure. 2: Error Representation of each algorithm for dataset A 
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With these visuals, we will verify the behavior of each 

algorithm for both the datasets and draw conclusive results. 

Furthermore, additional parameters like computational 

complexity, convergence rate and stability of the system are 

discussed in table (3) on the basis of figure (4a) and (4b) 

respectively. 

C. Experiment and Results 

In the first simulation, adaptive filters are implemented based 

on each algorithm. Weights  are initialized in three fashion: a 

one-dimensional array with initial weights of the filter size; 

creating zero value weights and creating random value 

weights. Once the weights are initialized and adaptive filters 

are implemented they are optimized for variable parameter. 

Here, step-size (µ) is the variable parameter in all the 

adaptive filters. It is also known as learning rate for 

algorithms. To achieve faster convergence larger values of 

variable parameter need to be selected. But smaller values of 

step-size results in better steady state square error. Therefore, 

proper selection of µ is an utterly important task. It should be 

able to balance the trade-off between convergence speed and 

mean absolute error values. 

For each filter, the value of variable parameter µ is chosen by 

k-fold cross validation[46], where the value of k=10.Initially, 

the value of µ is varied between (0.1)−4 to 1 and 

corresponding error of the data set is checked. Since the aim 

is to minimize the error, the optimized value of µ is selected 

for which the filter produces least error.  Once µ is final for a 

filter, its value is fixed and is used to evaluate final error 

expressions. This process is repeated for each filter using its 

respective optimized µ because the value of µ is different for 

each algorithm. 

During simulations, few assumptions follow: the error e(k) 

and input signals u(k) sequences are statistically independent 

of one another. Also, during the entire procedure, the 

coefficients of the filter are statically independent of the input 

data present in filter memory. The performance of the filter is 

also dependent on parameters like convergence rate, 

estimated error. Table (1) and (2) shows the performance of 

the adaptive filters on basis of Mean absolute error (MAE), 

Root Mean Square Error (RMSE) and R-squared value (R2) 

for each algorithm for both the data sets respectively. Table 

(3) shows the performance of the adaptive filters on basis of 

computational complexity, convergence rate, and stability of  

the system. 

From table (1), for data set A it is clear that the RLS algorithm 

shows least values for MAE and RMSE both. In fact, it has 

the highest value of R2 score which means that RLS was able 

to fit the data set as close as possible to observed values. 

Therefore, RLS scores rank first and have proved itself to be 

the best among other algorithms. At the same time, WLMS 

also shows good results. It shows second highest value for 

R2score and hence ranked second on the list. It’s MAE, 

RMSE values are close to that of RLS which means these two 

algorithms show almost similar behavior for dataset A. Poor 

performance is shown by NLMS and GNGD algorithms. As 

discussed in section II-B, NLMS filter is supposed to show 

faster convergence than SLMS adaptive filter. At the same 

time, GNGD is also expected to achieve better performance 

than other least mean square based algorithms because it has 

additional gradient adaptive term in the learning rate as 

discussed in Sec. II-C. Upon experimentation, these two algos 

(NLMS,GNGD) failed to overpower the results shown by 

SLMS. NLMS and GNGD showed high value for both error 

estimation and lowest values for R2 score. Hence these two 

are ranked lowest on the list. In table (1), AP algorithm has 

close values of MAE when compared with MAE values of 

NLMS and GNGD algorithms. At the same time, AP shows 

low RMSE value which means that it was able to provide a 

better fit around the best fit line with respect to NLMS and 

GNGD algorithms.  

(a) LMS (b) NLMS (c) GNGD 

(d) WLMS (e) RLS (f) AP 

Figure. 3: Error Representation of each algorithm for dataset B 
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This can also be verified with its R2 score which is relatively 

higher than both NLMS and GNGD. SLMS and WLMS have 

same values of MAE but RMSE values differ which clearly 

states that WLMS provides a better fit as it has less value of 

RMSE.  

Again this can be verified by looking at the R2 score as higher 

value of this parameters how show good the algorithm has 

fitted the data set. That is why SLMS is ranked third below 

the rank of WLMS. So, experimental results obtained from 

SLMS and WLMS verifies the theoretical aspects sec. II-A 

and II-D respectively.  

From table (2), for data set B, RLS algorithm has again proved 

itself top notch in the list. It has highest R2 score value along 

with least MAE and RMSE values. Henceforth, it is proved 

that RLS algorithms work best in time-varying environments. 

WLMS stands at rank second on the list with second highest 

R2 score and error values. RMSE values of GNGD algorithm 

and WLMS algorithm is same this does not mean that both 

have performed equally. As there is a significant difference 

in MAE values and R2 score WLMS clearly wins the race. 

SLMS again shows average performance for this data set as 

well. GNGD, NLMS, AP again failed to provide a good fit. 

All three have R2 score less than 50% and they dissolute their 

purpose. On the basis of MAE, RMSE and R2 score 

GNGD,NLMS, and AP are ranked fourth, fifth and sixth 

respectively. Hence, it can be concluded that the performance 

of algorithms is dependent on the dataset also. It does not 

matter how good an algorithm is theoretically it needs to 

prove its worth during experimentation with respect to data 

sets. 

After discussing the statistics of all the algorithms upon 

experimentation, let’s now look at the visual representation 

of these algorithms for both the datasets. Figure 2 and 3 

shows the plot between error and data points for all adaptive 

filter algorithms for both datasets. Each plot shows visual 

representation between ”Actual Value Plot” and ”Prediction 

Plot”. Actual value plot i.e. actual data points are represented 

using a blue color line. On the other hand, the predicted plot 

is made using a red line. From fig. 2 and 3 it is easy to infer 

how the algorithms have performed within the dataset. Close 

proximity of between the lines of actual value plot and 

prediction plot means that the particular algorithm was able 

to provide a good fit for the dataset. Similarly, if the predicted 

plot is not close to the actual value plot then that algorithm 

failed to provide a better fit for the dataset. The same can also 

be verified by looking at the R2 score values of the respective 

algorithm in tab. 1 and tab.2. 

Let’s consider two plots of RLS algo 2e and 3e from fig. 2 

and 3 respectively. In both the plots, we can observe that 

Prediction plot was able to provide a very close fit to the 

actual value plot. This can also be verified by the RLS 

algorithm’s R2
 score in the tab. 1 and 2 respectively. Higher 

the R2
 score better the fit. RLS’s R2

 score is 0.852 and 0.758 

for dataset A and B respectively. This score is close to 1 

which is the maximum value for R2
 score. Similarly, let’s 

consider the plots of NLMS in 2b and 3b from fig.2 and 3 

respectively. In both the plots, we can observe that the 

prediction plot is not close to the actual value plot. There is a 

considerable difference between the blue line and red line of 

the plots.  This proves that NLMS has provided a bad fit for 

both the datasets. Again this can be verified by the R2
 score. 

of NLMS algo in the tab. 1 and 2 respectively. For both 

datasets, NLMS’s R2
 score was less than 0.5. Hence, the 

NLMS plots 2b and 3b correctly described the behavior of 

NLMS algorithm for both the datasets.  Similar conclusions 

can be drawn from the rest of the plots in fig. 2 and 3. The 

plots of WLMS 2d and 3d also justifies the higher R2
 score 

value that WLMS has shown upon experimentation in tab.1 

and 2. Rest plots for algorithms SLMS, AP and GNGD also 

satisfy the statistical results obtained in tab. 1 and 2. We can 

see that for all these algorithm’s plots there is a considerable 

difference in the predicted plot and actual value plot. This 

difference in the predicted plot and actual value plot shows 

why these three algorithms:  SLMS, AP, GNGD have poor 

value for R2
 score. That is why they are ranked based on 

statistics of MAE, RMSE and R2
 score values. 

Results in table (3) is computed with help of figure (4a) and 

(4b) together. It depicts the computational complexities, the 

convergence rate of each algorithm, and the stability of the 

system. Figure (4a) and (4b) illustrates the convergence 

curves for advanced adaptive filter algorithms for data sets A 

and B respectively. From table (3), it can be concluded that 

RLS has shown steady convergence rate and has taken the 

system to a stable state for both the data sets.  

 
         (a) For Data set A 

 

 

 
         (b) For Data set B 

   

 

 Figure 4: Convergence Curves for Advanced Adaptive 

Filter Algorithms 
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Though  it has greater computational complexity it 

successfully outperformed every other algorithm in terms of 

error and convergence rate and took the system to a highly 

stable state. 

 SLMS(or LMS) and WLMS have also shown very fast 

convergence rate. SLMS is comparable to WLMS in terms 

of computational complexity. The computational 

complexity of GNGD is approximately two times that of 

NLMS as it uses additional gradient adaptation term called 

regularization factor. Although its complexity can be 

reduced by imposing some hard bounds like stopping its 

adaptation after convergence. However, no such constraints 

were used while experimenting here. Theoretically, APA 

algorithm was supposed to outperform all other algorithms 

specially SLMS, NLMS, and GNGD as discussed in Sec. II-

F. But it failed to do so. It exhibited a slower convergence 

rate and more error values for both data sets. Therefore, 

ranked fourth for data set A and sixth for data set B. 

IV. Conclusion and Future Works 

All the algorithms discussed in this paper are stochastic 

gradient approximations to the steepest-descent method. 

These algorithms are implemented with the aim to minimize 

the mean absolute error between the desired signal 𝑑(𝑘) and 

output signal 𝑦(𝑘). As the result of performance analyses, 

RLS algorithm proved to be the most suitable algorithm for 

estimating wind-power generation. Therefore, it is ranked 

first for both the datasets A and B. At the same time, RLS 

has proved to be best in terms of convergence speed as well 

as the stability of the system. Though its computational 

complexity is high w.r.t to all other algorithms. 

WLMS is found to be comparable to RLS and can be used 

in similar data sets. It also showed good convergence which 

is remarkable to take the system towards a stable state. 

Henceforth, WLMS takes second place in the list. The next 

algorithm in the race is SLMS. SLMS algo exhibited a very 

fast convergence rate but at the same time, the stability of 

the system was not so high. That is why SLMS is ranked 

third in the list. Experimental results obtained from SLMS 

and WLMS verifies the theoretical aspects discussed in Sec. 

II-A and II-D respectively. When other algorithms like APA 

is seen its resultant MAE and RMSE is greater than that of 

SLMS and NLMS. Despite the fact, APA algorithm should 

have performed better as sole purpose of this algorithm was 

to overcome the drawbacks of least mean square based 

algorithms as discussed in section II-F. However, the 

performance of APA can be improved by increasing the 

projection order N which will result in high computational 

complexity. Another reason for AP’s high complexity is that 

it performs various operations over the matrix. Operations 

like matrix inversion which alone gives O(n3) as the 

computational complexity [45]. APA is ranked fourth 

considering its performance from tab. (1), tab. (2) and tab. 

(3). In theoretical aspects, proper selection of µ while 

implementing NLMS filter was expected to show faster 

convergence than SLMS adaptive filter. This is because 

NLMS algorithm differs from SLMS algorithm only on one 

factor:  time-varying step size µ(k) known as data- 

dependent adaptation step size. Though while 

experimentation, NLMS did not offer better trade-off over 

SLMS, while µ was properly optimized to get best results. 

That is why NLMS is ranked third on the list. GNGD stands 

among the worst performers in the list. GNGD algorithm has 

an additional gradient adaptive term in the learning rate 

which enables it to adapt its learning rate with the dynamics 

of the input signal vector. But in spite, this additional 

gradient adaptive term GNGD has highest MAE, RMSE 

values and lowest R2 scores. Thus, we can conclude that no 

matter how good an algorithm is theoretically it is always 

dependent on the dataset to which it is applied. Performance 

of the algorithms can be further improved but at the cost of 

increasing its computational complexity. Other algorithms 

too can be implemented to form adaptive filters which may 

show better performance in terms of error, complexity, 

convergence, and stability. 
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