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Abstract:  This article provides an improved lower limb activ-
ity prediction system using surface EMG raw data and Broad
Learning (BL) classifier. The proposed feature is calculated us-
ing three main sequential steps; First, convert EMG raw data
to several narrow overlapping segments; Second, apply Kaiser
window function and short-time Fourier transform for each
segment; Third, find the texture analysis of EMG power spec-
trum. The public UCI database is used for system evaluation.
Experiments show that lower limb activity prediction achieved
the highest results of 96% 94%, and 90% for knee abnormal
group, normal group, and both groups together, respectively.
Moreover, This study proves the possibility of achieving an ac-
ceptable activity prediction results in case of mixing normal and
knee abnormal groups together.

Keywords: Lower Limb, Activity,Broad Learning,Prediction,
Power Spectrum.

1. Introduction

With the continuous improvement and usage of computer-
ized machines, Human Computer Interface (HCI) has be-
come an increasingly remarkable sign in our daily life. In
HCI technology, it is possible to link computers with hu-
man biomedical signals such as Electrooculogram (EOG),
Electrocardiogram (ECG), Encephalogram (EEG) and Elec-
tromyogram (EMG) for providing tremendous useful appli-
cations [1, 2, 3].

In general, Electromyography is the study of muscle func-
tionality depending on the tests and analysis of the generated
electrical signals from muscles. Actually, Electromyogram
(EMG) signal is related to the physiological changes in mus-
cle state of membranes fiber, and appears as released electri-
cal currents and voltages during muscle contraction process
[4, 5]. Hence, interpreting EMG signals may give an impor-
tant information and further physiological performance di-
mensions for human body [4].

According to the valuable embedded messages behind EMG
data, it could be invested to serve important applications such
as motor control in robotics and virtual games, abnormality

diagnosis, physical therapy, and limbs activity recognition
[3,6,7,8,9,10, 11, 12].

In fact, intensive researches are trying to enhance the robust-
ness and reliability of HCI lower limb’s applications because
their EMG data are noised and distorted by human gravity
and normal muscle jitter more than the upper limbs [13].
Consequently, in this paper, a new lower limb motion pre-
diction system is provided depending on the texture analysis
of EMG power spectrum and Broad Learning (BL) classifier.
EMG spectrogram data are obtained using Kaiser function
and Short Time Fourier Transform (STFT). Then, the com-
bination of sequential mathematical steps with local range
texture filter is utilised to obtain the final extracted feature.
The novel contributions of the proposed prediction system
are listed as follows:

1. Animproved feature is extracted from the texture repre-
sentation of EMG power spectrum. Compared with pre-
vious related works which used the same UCI database,
it enhanced lower limb motion prediction results.

2. The powerful Broad Learning (BL) classifier is used for
feature extraction evaluation. The tested experiments
prove the validity of BL classifier among other clas-
sifiers in terms of getting the most reliable results and
minimum training time which is useful in real time ap-
plications.

3. Experiments show that lower limb activity prediction
reliability among knee abnormal group is better during
only the two movements of walking and standing.

4. This study proves the possibility of achieving an accept-
able activity prediction results in case of having a mix
of normal and knee abnormal subjects together.

The remainder of paper is organized as follows; Section two
provides a description of recent and related literature review.
Section three presents the proposed work methodology in de-
tail. Section four illustrates the tested experiments, results
with analysis and comparisons, and final section mentions
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the overall conclusion, and suggests possible directions for
future work.

II. Literature Review

Lower limb activity prediction is one of the most challenging
and interesting intelligent based application [14]. According
to its necessary and important applications in several life do-
mains, researchers are competing to increase the prediction
reliability performance by improving the power of extracted
features, using new classification techniques, and producing
hybrid extraction features [14].

Here, a recent related works description are illustrated and
analysed. Many recent researchers used the same UCI pub-
lic database as in this study, for example, Vijayvargiya et al.
[15] used two pre-processing filters: wavelet de-noising filter
for removing White Gaussian Noise (WGN), and Ensemble
Empirical Mode Decomposition (EEMD) filter for remov-
ing Power Line Interference (PLI) and Baseline Wandering
(BW) distortions/noises. In feature extraction, a total number
of nine different time domain features were extracted. Linear
Discriminant Analysis (LDA) classifier was constructed to
classify walking, standing and sitting motions, and obtained
accuracies of 90.69% and 97.45% for both healthy and knee
abnormal groups, respectively.

In Gautam et al. [16] study, EMG signals were end-to-end
trained to classify walking, standing, and sitting motions us-
ing Transfer Learning based on deep Long-term Recurrent
Convolution Network (LRCN). Good results of 98.1% and
92.4% were obtained for both healthy and knee abnormal
groups, respectively.

In Zhang et al. [17] research, EMG data were segmented,
and then decomposed using three different approaches of
Empirical Mode Decomposition (EMD), Multivariate EMD
(MEMD), and Noise-Assisted MEMD (NA-MEMD). The
decomposed Intrinsic Mode Functions (IMFs) were obtained
and normalized in each approach, and then, estimated using
the spectra analysis. Finally, the number of IMFs, mode-
alignment, and mode-mixing criterions were evaluated. The
experiments show that NA-EMD approach achieved the bet-
ter results among the healthy group with accuracies of 79%,
83% and 83% for walking, sitting, and standing motions, re-
spectively.

Herrera et al. [18] extracted time-frequency domain fea-
tures from EMG signals using wavelet transform and spec-
trogram. In classification, Multilayer Perceptron-Artificial
Neural Networks (MP-ANN) was used among knee abnor-
mality group and got accuracies of 88%, 94%, and 92% for
classifying walking, sitting, and standing motions, respec-
tively.

Naik et al. [19] decomposed EMG signals using both In-
dependent Component Analysis with Entropy Bound Mini-
mization (ICA-EBM) technique, extracted several time do-
main features, and applied Fisher score with statistical mod-
els for feature selection. Linear Discriminant Analysis
(LDA) classifier was constructed and got a good accuracy of
96.1% and 86.2% for healthy and knee-abnormality subjects,
respectively.

Recently, Issa et al. [20] also depended on UCI public
database. they derived texture characteristics for EMG spec-
trum during walking, sitting, and standing movements us-

ing Short Time Fourier Transform (STFT) and Convolutional
Neural Network (CNN). Their experiments achieved an ac-
curacy of 92% for classifying three motions among normal
group, and 95% for classifying only two motions among ab-
normal group.

Additionally, several studies used other EMG database
sources. For example, Ai et al. [13] extracted distinct time
domain features with wavelet coefficients. Two ordinary ma-
chine learning of Linear Discriminant Analysis (LDA) and
Support Vector Machine (SVM) were implemented to pre-
dict five different motions, and got an accuracy of 95%.
Laudansk et al.[21] used a collection of time domain and fre-
quency domain features, and neighborhood component anal-
ysis for dimension reduction. K Nearest Neighbor (KNN)
was constructed to predict different knee flexion postures and
produce an acceptable accuracy of 80.1%.

Zhang et al. [22] presented an extraction feature using both
Wavelet Transform (WT) and Singular Value Decomposition
(SVD). Their system achieved an accuracy of 91.85% for
classifying four different motions.

Nazmi et al.[23] worked on five time domain features and
Artificial Neural Network (ANN) classifier. They obtained
an accuracy of 87.4% for predicting two movements.

Due to the above literature description, it is obvious that it
still needs more improvement and enhancement [14]. Most
related works depended on extracting a huge dimension
of feature extractions, used complicated feature extraction
methods, and/or hybrid features to obtain reliable models
[13, 15,18, 19, 21, 22, 23].

III. The Proposed Prediction System

Any prediction system consists of the following stages: Data
Acquisition, pre-processing, feature extraction, and classifi-
cation. Figure 1 illustrates the flow chart of the proposed pre-
diction system. In this section, lower limb prediction system
stages will be discussed in detail.

A. Data Acquisition and Pre-Processing

In this study, the public UCI EMG surface database is chosen
for evaluating the proposed feature extraction. UCI datast
includes EMG recordings for 22 subjects (50% of subjects
have knee abnormality). Healthy subjects do not have any
preceding case history for knee problems [24].

All subjects were asked to perform three different motions:
walking, sitting, and standing. EMG raw data was mea-
sured using only four EMG electrodes around the following
muscles: Recto Femoral (RF), Femoral Biceps (FB), Vastus
Medialis (VM), and Semitendinosus (ST). Additionally, go-
niometer was attached to the external side of the knee joint
[24].

DataLOG MWXS8 device of 8 digital channels and 4 analog
channels were used for EMG data measuring and recording.
A real-time datalog software of Bluetooth technology was
implemented to save EMG signals in a computer. Then, data
was sampled at 1000 Hz and 14 bit resolution [24].
Pre-processing is necessary before extracting feature stage,
hence, a band pass filter of range 10-250 Hz was applied.
Table 1 summarises the public UCI database.
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Figure. 1: The Proposed Prediction System
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Table 1: UCI Database Summary.

Subjects 22 persons above 18

11 Normal persons

11 Abnormal persons
Number of Channels 4 Channels

RF, BF, VM, and ST Muscle

Sample Rate 1k Hz

Acquisition Task 3 motions (Walk, Stand, Sit)
Frequency Range 1-500 Hz

Recorded Device DataLOG MWX8

B. Feature Extraction

The statistical local range texture for Power Spectrum (PS)
magnitudes of EMG raw data is implemented as an extracted
feature for the proposed prediction system. Feature calcula-
tion can be summarized in the following stages:

1. Split EMG signal into equally and overlapping seg-
ments.

2. Calculate the spectrum for each segment using Kaiser
window function to get the Short Time Fourier Trans-
form (STFT). The main equation of STFT is given by
[25]:

STFTx[n|(m,w) = Z z[njwn —mle ¥ (1)

n=—oo

where x(n) is the EMG time domain signal; w(m) is
Kaiser window function, and m is the number of seg-
ments. Kaiser window function is defined below [26]:

where /3 parameter is the convenient continuous control
between side lobe level and main lobe width; and I, is
the zero order modified Bessel function of the first kind.

3. Calculate the signal Power Spectral (PS) for all seg-
ments [27].

1
PS = | X(NI* f=0:N -1 3)

where PS is the power spectrum; and X (f) is the two
sided spectrum of EMG data.

4. Apply the statistical local texture filter to the concate-
nated power spectrum matrix of the four EMG channels.
Eq.4 below describes the statistical local range texture
calculation.

PS[r][c] = max(Nhood(PS[r][c],3)) @
— min(Nhood(PS|r][c],3))

where r row represents the channel number; ¢ column
represents the power spectrum distribution; and Nhood
is the neighborhood matrix of size 3 x 3.

5. Reduce the feature extracted dimension to 4 x 50 by

dividing each power spectrum vector to 50 batches.

Ve € C[PS’ = max PS(R, ¢)] (5)

where R row represents the channel number (1-4); ¢ col-
umn represents the power spectrum distribution; and C
represents the batch number (1-50).

Algorithm 1 below presents the pseudocode of feature ex-
traction calculation.

Algorithm 1 Feature extraction Method

1:
2:
3:
4:

0L PR

11:
12:

13:
14:
15:

procedure FEATURE(E M G)

X(n) < EMG
for m segments do
S x[nJwln — mle=7¥" > STFT transform
Eq.1
sin(y/(24£)2—32 .
w(m) = %% > Window
function Eq.2
end for
for f frequencies do
PS + 3=|X(f)? > Power Spectrum Eq.3
end for
PS[r][c] — max Nhood(PS|r][c],3) —
min Nhood(PS|r][c],3) > Texture Eq. 4
for c do
[PS’ < max PS(R,c)] > Reduce Dimension
Eq.5
end for
return PS
end procedure

Furthermore, Figures 2 and 3 give examples of power spec-
trum extracted feature for normal, and knee-abnormal sub-
jects during the three motions of walking, standing, and sit-
ting, respectively.

C.

In

Classification

classification, Broad Learning (BL), deep CNN classifier,

and other two ordinary machine learning models were con-
structed and trained to predict the lower limb movement.

e The new Broad Learning (BL): BL construction is de-
rived from Random Vector Functional Link Neural Net-
work (RVFLNN) [28, 29]. Figure 4 illustrates the flat
BL system structure, it contains the following layers:
Input layer; Establishment layer; Enhancement layer;
and output layer.

Input layer X has the size of N x M, where N is the
sample size and M is the total features in each sample.

Establishment layer or Z nodes concatenates and uses
the previous input layer according to the following
equations [28, 29]:

Zi = ¢(XWeZ +6ei)ai =1,..,n (6)
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Figure. 4: BL Structure [29]

z7" = [Zlv"'vzn] (7)

where ¢ is the transfer function; Wei is a randomly gen-
erated weight; 3.; is a randomly generated bias; and Z"
is the concatenated Z nodes together.

In enhancement layer or H nodes, a broad concatena-
tion includes the previous layers is calculated using the
following equations [28, 29]:

H; =&(Z"Whj + Brj),j=1,....,m ®)

H™ = [Hla"'aHm] (9)

where £ is the sigmoid transfer function; Wei is a ran-
domly generated weight; 3; is a randomly generated
bias; and H™ is the concatenated H nodes together.

Finally, output layer Y of size N x C, where C is the
class label number [28, 29].

Y =21,y Zn | E(Z"Wii + Bri)s oo
=[Z1,.s Zn | Hy, ..., HyyJWT (10
[Z™ | H™ W
= AmWm

where W, is the output weight matrix.

After rearranging Eq.10 we get the following one [28,
29]:

W =[Z" | H"]TY = (A7)TY (11)

In this study, the ridge regression of the pseudoinverse
[28, 29] technique is used to find the output weight ma-
trix as seen in Eq.12.

W™ = (A + AAT) 1 ATY (12)

arg min :|| W — M 178+ | W |72 (13)
w

where 02 = 1, 01 = 2, v and v are norm regulariza-
tions; W is the sparse autoencoder solution; and Z is
the outcome of the linear equation.

Then, the iterative steps in Eq.14 could be used for the
proximal problem [28, 29]:

wiy1 = (Z7Z + pI) "N Z"x + p(o* — "))
Ok41 := S% (wk+1 + uk)

Upt1 1= U + (Wkt1 — Op41)
(14)

where p > 0, and S is the soft threshold value which is
defined in the below equation [28, 29]:

a—k, a>k
Sk(a) =< 0, la|<k (15)
a+k, a<-—k

According to Gaussian elimination method, the com-
plexity computation of BLS training and sparse autoen-
coder processes are O(MNC) and O(MN), respec-
tively, where N is the number of training sample; M
is the number of features in each sample; and C is the
number of classes in output layer.
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o Convolutional Neural Network (CNN): It is organized
in a deep three dimensions. Figure 5 illustrates CNN
basic structure [30, 31].

It contains input layer; a basic convolution layer for cal-
culating the neurons which are related to the local parts
of previouslayer; pool layer for down sampling the spa-
tial dimension; and fully connected layer for providing
the final category or class label [30, 31].

Support Vector Machine (SVM): It is a common super-
vised learning classifier in machine learning [32].

Suppose that X is the training sets or features where X
=x1, x2, ..., xi, and Y is the corresponding class labels
of X where Y =yl, y2, ..., yi, therefore, Eq.16 should
be solved [32].

l

sgn(w? ¢(x;) +b) = sgn(z Yo K (2, ) +b) (16)
i=1

where K (z;,x) represents the kernel function; and
¢(x;) manipulates with z; in a higher dimensional
space.

Linear Discriminant Analysis (LDA): It is a generaliza-
tion of Fisher’s linear discriminant [33].

Its solution principle depends on assuming that the con-
ditional probability density functions of P(Z,¢) = 0
and P(Z,¢) = 1 are normally distributed, where Z is
the sample features; and c is the corresponding class of
Z . As shown in Eq.17 [33],

c

> (i = ) (i — )"

i=1

1

Cc

o=

a7

where 1 is the class mean.

IV. Results and Discussion

Power Spectrum (PS) feature matrix of EMG signals was cal-
culated, and has the size of 240x4, 240 is related to to the
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Figure. 6: The Constructed CNN

frequency spectrum range, and 4 is related to the four muscle
channels. The proposed feature is down sampled to reduce
the dimension to 50x4 by dividing each power spectrum vec-
tor to 50 batches.

Ten-fold cross-validation was utilized. Then, Broad Learn-
ing (BL), Convolutional Neural Networks (CNN), Support
Vector Machine (SVM), and Linear Discriminant Analysis
(LDA) were constructed for classification and evaluation pur-
poses.

The parameters for the constructed classifiers are summa-
rized below:

1. BL classifier : Feature nodes are five with ten batches
for each feature node. Enhancement nodes number is
3000, sigmoid transfer function is used, and randomly
generated weights within the normal distribution of [1,
1] interval.

CNN classifier: The specification and parameters are
provided in Figure 6.

It comprises the following layers; Input Layer of size
4 x 50; Convoloutional layer with filter size of 4 x 4 and
a stride motion of two steps; Pooling layer with filter of
size 2 x 2 and a stride motion of only one step; Softmax
lose function in the fully connected layer; and output
layer to predict the class category.

3. SVM classifier: Polynomial kernel function
4. LDA classifier: PseudoLinear discriminant.

The evaluation motion prediction system includes three ex-
periments: Motion prediction among Normal group; Abnor-
mal group; and finally, among normal and abnormal groups
together.
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Tables 2 and 3 provide the experimental accuracy results for
normal group, and knee abnormal groups, respectively. Ta-
bles 4 and 5 provide the experimental accuracy results for
both groups together in case of two and three motions, re-
spectively.

Figures 7 and 8 present the average accuracy of the con-
structed classifiers in normal and abnormal subject groups,
respectively. While, Figures 9 and 10 present the average ac-
curacy of the constructed classifiers in both groups together
in case of three and two motions, respectively.

Table 2: Accuracy Results for Muscles in Normal Group

Classifier RF BF VM ST All Musc.
BL 85 90 85 80 90
CNN 85 85 80 86 85
SVM 70 72 70 70 75
LDA 71 65 66 66 73

Table 3: Accuracy Results for Muscles in Abnormal Group

Classifier RF BF VM ST All Musc.
BL 90 85 90 85 96
CNN 80 82 38 83 88
SVM 77 70 68 60 80
LDA 70 75 66 67 70

Table 4: Accuracy Results for Muscles in Both Normal and
Abnormal Groups: Three Motions

Classifier RF BF VM ST All Musc.
BL 81 80 84 81 85
CNN 75 75 77 80 80
SVM 60 60 66 60 55
LDA 66 58 55 60 50

Table 5: Accuracy Results for Muscles in Both Normal and
Abnormal Groups: Two Motions

Classifier RF BF VM ST All Musc.
BL 80.2 | 80.2 | 80.2 83.5 | 94
CNN 85 80 75 80 85
SVM 71 72 75 73 70
LDA 65 64 70 69 70

Normal Group

LDA

BL CNN
Figure. 7: Accuracy Results for each Muscle in Normal
Group
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Due on the experimental results, the proposed power spec-
trum feature shows better results for lower limb motion pre-
diction among abnormal group in case of two motions, fol-
lowed by normal, and both groups together. Where, the
achieved accuracy results are 96%, 94%, and 90%, respec-
tively.

On the other hand, it is clear that the best results are for broad
learning, followed by deep learning and ordinary machine
learning, respectively. Although deep learning model is con-
sidered as a powerful classifier and provide reliable high re-
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sults [28, 34, 35], its construction requires a deep dimension
layers and complex consuming calculations. Hence, huge
calculation space and much time are needed during classifier
training [28, 29].

In contrast, the flat and simple structure of BL classifier
achieved better accuracy results in all experiments according
to its efficient feature learning, as well as, in the proposed
system experiment, BL classifier training time is ten times
faster than CNN classifier.

Figure 11 below shows the difference in training time con-
sumption between the trained classifiers.

Training Time consumption

BL CNN LDA SVM

Figure. 11: Training Time Consumption Among Classifiers

Moreover, BL classifier training is flexible, which means that
any addition to the database could be treated automatically
without re-training all the system again from the beginning
as in deep learning [28, 29]. This improved feature suggest
to extend our proposed system using variant database during
time without slow down the system processing as a future
work plan.

Table 6 provides a comparison between the proposed
methodology and other recent literature in general, and in-
cluding the researches which based on our used public
database (UCI Database). Compared with other recent stud-
ies, the proposed work provides an enhanced extracted fea-
ture with less spatial dimension, and higher prediction results
without using any complex feature selection methods, and/or
support signals [13, 15, 16, 17, 18, 19, 20, 21, 22, 23].

V. Conclusion

The proposed article produces a new extracted feature de-
pending on the texture of EMG power spectrum. In ex-
periments, the constructed Broad Learning (BL) classifier
achieved a reliable and good results for both normal, knee-
abnormal, and both groups together, respectively. Further-
more, Broad Learning (BL) exceeds the powerful deep Con-
volutiona Neural Network (CNN) in terms of much lower
training time consumption. In future work, the proposed
method will be expanded to be applied in real time appli-
cations, as well, further experiments are needed to enhance
the system reliability.

Issa and Khaled
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