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Abstract: Walking pattern analysis known as Gait Analysis, is one of the key indicators among various clinical 
parameters such as cardiovascular disease, in identifying symptoms of diseases. With sensors, the walking patterns 
of people can be retrieved to identify the differences between patients and healthy controls. The paper comprises an 
analysis of Gait datasets comprising nine Kinematic gait parameters, using classification models, the development 
of a data augmentation algorithm, and a proposed prediction model. Classification analysis of the Gait dataset was 
done using Neural Network (98.65% accuracy). An algorithm GDAA was developed for the augmentation of Gait 
data whose time complexity is O(nf). The final result lies within a minimum, maximum range of the original dataset. 
The algorithm can be extended by researchers in augmenting their dataset with slight modifications. Data analysis 
of the augmented dataset was done on varying sizes of datasets to evaluate optimum classification results. Rigorous 
analysis of augmented data was done with Neural Network (97.1% accuracy). Ranking of gait features for both 
independent and dependent features was also done during the analysis. A prediction model is proposed which 
identifies whether input Gait data belongs to pathological gait or healthy gait with the help of a classification model 
trained on augmented data. 
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1. Introduction 
Digital health is the convergence of digital technologies with health, healthcare, living, and society 

to enhance the efficiency of healthcare delivery and make medicine more personalized and precise [1]. 
Walking is one of the most common activities humans do every day. With the help of sensors, we can 
analyze the walking pattern of a person which provides useful health information [2]. Gait Analysis is a 
systematic study, which involves analysis of measurement, description, and assessment of qualities that 
characterize human locomotion [3]. Healthcare professionals can explore human gait and implement 
results from the gait phase recognition concept in their routine practice to identify abnormalities [4]. Gait 
Analysis cannot definitively diagnose or predict a particular disease. However, the analysis results can 
be a value add for medical professionals to understand patients' behavior. Cardiovascular disease is a 
leading cause of mortality worldwide, and early identification of individuals at risk is critical for timely 
intervention and management. The MPU-6050 sensor is a small, low-cost device that can be easily 
attached to the body to collect Gait data. By analyzing this data using machine learning techniques, a 
prediction model can be developed to identify individuals at risk of developing cardiovascular disease. 

MPU-6050 sensors provide a non-invasive, cost-effective, and easily accessible method for 
identifying individuals at risk. This ultimately leads to better outcomes and reduced healthcare costs [5]. 
Gait Analysis can provide insights into an individual's physical function and mobility, and it can be useful 
in the diagnosis and management of various health conditions, including neurological disorders, 
musculoskeletal conditions, and cardiovascular disease. By analyzing Gait data collected from sensors, 
such as the MPU-6050, machine learning techniques can be applied to develop prediction models for 
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identifying individuals at risk of developing certain health conditions or for monitoring the progression 
of an existing condition. 

Gait Analysis can provide a valuable tool for improving the diagnosis and management of various 
health conditions, and the use of sensors can enhance the accuracy and reliability of Gait Analysis by 
providing objective and quantitative data. 

Health data is a crucial subject to perform research in. With limited data and time constraints, an 
augmentation algorithm that generates abundant simulated data was developed. Experiments with 
augmented data with accuracy and analysis with the actual dataset were performed. Augmented data for 
each gait parameter lies within the maximum and minimum range of the original data. The classification 
accuracy of augmented data was similar to that of the real datasets, ranging from 88.4% to 99.2%. Details 
are in section 4. gait Features were not only identified as independent and dependent but were also ranked 
using Info. Gain, Gini, ANOVA, and χ² methods. Finally, a prediction model was proposed that predicts 
whether the gait pattern of the new subject is pathological or healthy gait with an average of 97%. 

While several studies have investigated the potential of gait analysis in cardiovascular and other 
diseases, our research focused specifically on a data augmentation algorithm. The augmentation 
algorithm provided a solution to overcome the issue of limitation of healthcare data research. Building 
upon this foundation, the present study highlights a detailed research analytical framework, data 
preprocessing, classification, comparison and prediction model along with feature ranking among the 
features used for the research. 

2. Related Work 
Research work [6] explores the use of Gait Analysis and the MPU-6050 sensor in the early 

identification of cardiovascular diseases. The authors develop an analysis framework for Gait data and 
apply data augmentation techniques to improve the accuracy of their prediction model. The results of 
their study suggest that Gait Analysis using the MPU-6050 sensor can be a useful tool for the early 
identification of cardiovascular diseases. The paper [7] presents a Gait Analysis framework for predicting 
cardiovascular disease using data collected from the MPU-6050 sensor. The authors apply machine 
learning techniques to Gait data and compare the performance of various prediction models. Their results 
demonstrate that Gait Analysis using the MPU-6050 sensor can be an effective tool for the early 
identification of cardiovascular disease. The research work [8] presents a machine learning-based 
approach for the early identification of cardiovascular disease using Gait Analysis with the MPU-6050 
sensor. The authors develop a prediction model using a combination of gait features and clinical data. 
Their results demonstrate that Gait Analysis using the MPU-6050 sensor can be a useful tool for the early 
identification of cardiovascular disease, particularly when combined with other clinical data. 

This paper [9] presents a prediction model for the early identification of cardiovascular disease using 
Gait Analysis with the MPU-6050 sensor. The authors develop a feature extraction method and apply a 
Support Vector Machine (SVM) classifier to predict cardiovascular disease. Their results demonstrate 
that Gait Analysis using the MPU-6050 sensor can be an effective tool for the early identification of 
cardiovascular disease, with an accuracy of over 90%. This paper [10] presents a systematic review of 
studies investigating the use of Gait Analysis with the MPU-6050 sensor for the early identification of 
cardiovascular disease. The authors analyze the methodologies used in previous studies and compare the 
performance of various prediction models. Their review suggests that Gait Analysis using the MPU-6050 
sensor has the potential to be a useful tool for the early identification of cardiovascular disease, but further 
research is needed to improve its accuracy and reliability. 

The study of related work was useful in selecting the MPU-6050 sensor for the Gait Analysis. These 
related works were useful in validating the gait parameters and machine learning algorithms. Nine gait 
parameters were evaluated and the machine learning algorithms used are relevant and value-adding in 
Gait Analysis research. Evaluation of time and distance parameters during walking helps assess abnormal 
gait, to quantify improvement resulting from interventions, or to predict subsequent events such as falls 
[11]. The study of human gait, analysis of gait patterns with the help of different categories of gait 
parameters, and statistical and machine learning algorithms used in the study of Gait Analysis are studied 
in detail to analyze the research gap. Some relevant works are presented in the below sections. 

2.1. Human Gait Analysis 
Gait phases describe the entire walking period of a human being. Walking is a periodic movement of 

body segments and includes repetitive motions, therefore, the gait phase is used for illustration [12]. 
However, patients impaired by paralysis or arthritis might show deviated behavior. There is a low 
probability of a patient with paralysis touching his/her heel to the ground like that of healthy control. 
Likewise, the initial floor contact may be made by the entire foot i.e., flat foot, rather than using the 
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forefoot to contact [13]. Sensor-based systems have assisted research works to identify healthy and 
pathological gait with the help of sensor-based computer systems. Research [14] performs temporal Gait 
Analysis to evaluate adaptive gyroscope-based algorithms. The algorithm used in the research adaptively 
calculated thresholds to determine Initial Contact and Terminal Contact which have some parameters for 
analyzing gait patterns. Authors in the paper [15] have published methods to detect the quasi-real-time 
gait event using uniaxial shank-attached gyroscopes. Uni-axial gyroscopes were attached on shanks 
measuring the mediolateral axis angular velocities which helped in identifying end contact and initial 
contact. It suggests that end contact and initial contact events have distinctive features in the sensor 
signals appearing as sharp negative peaks. 

Researchers have built an inverted pendulum model of gait which posits that the leg alternates 
between advancing as a pendulum during the swing phase (pivot at the hip) and as an inverted pendulum 
during the stance phase (pivot at the foot) [16]. The use of two sensor devices Microsoft Kinect and 
3DMA cameras is done to perform a comparative analysis of gait parameters. This research highlighted 
the gait speed, step length, and stride length possessed overall and relative agreement between two sensor 
devices with low percentage error (<8%). Foot swing on the other hand possessed excellent relative (r = 
0.93) and overall agreement with percentage error (13%). Research on gait disorder and balance is 
performed by the authors [17] on patients with Alzheimer's disease. Stride and gait cycle decomposition 
were retrieved from the sensors for analysis. Research performed an ANOVA test which reflected a 
significant measurable difference in gait parameters. Gait Analysis has played an important role in 
analyzing the step-by-step spatiotemporal parameters of the elderly suffering from hemiparetic, 
parkinsonian, and choreic gait. 

Research work presents a case study in the analysis of Kinetic and Kinematic gait parameters in the 
spastic hemiplegic patient after selective tribal neurotomy [18,19]. Research experiments on the healthy 
and patients with neurological diseases. Gait Analysis was performed before and after a week of patients 
suffering from spastic hemiplegia using 3DGA systems. The research identified the spatiotemporal 
factors associated with the gait of bilateral lower extremities one week after STN. Authors identified that 
one of the symptoms of heart-failure in old age people was gait speed [20]. It was identified as one of the 
parameters of the research which consisted of 331 subjects 70 years old or above. Research work 
introduced a new approach to achieving a more reliable method to assess the physical performance status 
(PPS) among different groups of cancer patients undergoing chemotherapy [21]. With the use of body-
mounted inertial sensors in 23 body segments, a six-minute walk test (6MWT) was performed. Research 
work considered calculating the parameters such as running average, temporal median, and motion 
history image two weeks before chemotherapy, and two weeks after chemotherapy. It was observed that 
a higher gait speed with a greater range of body motion is related to an appropriate PPS. Slower gait 
speed resulted in a smaller range of physical motions which caused a limitation in a variety of clusters 
along with two or more consecutive sequences.  A wearable multi-axis inertial measurement module 
using an MPU-6050 sensor was attached to the feet of patients with Stroke or Parkinson’s disease [22]. 
This research uses a tri-axial gyroscope, tri-axial accelerometer, inertial signal acquisition, and signal 
processing to detect the gait phase. This work will greatly assist in comparing the gait parameters with 
cardiovascular patients. 

Nandy and Chakraborty performed Gait Analysis research using a Kinect Xbox device and cross-
validated it with their in-house development of a sensor-based biometric suit, an Intelligent Gait 
Oscillation Detector(IGOD) [23]. Researchers captured gait signatures from joint angle trajectories of 
the left hip, left knee, reign hip, and right knee of the subjects’ skeleton model. Machine learning 
algorithms such as Naive Bayesian classifiers and K-Nearest Neighbour are used to compare IGOD Data 
and Kinect Sensor Data. The research concluded the Mean % Error from Kinect Sensor Data was reduced 
from that of IGOD Data and the result increased for the k-NN algorithm.  

Allseits and the team developed a real-time algorithm for temporal Gait Analysis using inertial 
measurement units [24]. Shank gyroscope has been used as an Inertial Measurement Unit to identify 
heel-strike and toe-off. Research highlights the significance of heel-strike and toe-off which serves as a 
foundation for the calculation of gait parameters. In-shoe motion sensors (IMs) are used on 26 healthy 
subjects to estimate the temporal gait parameters concerning bilateral lower limbs using a gait event 
detection approach [25]. The research was carried out by using a 3D motion analysis system, the Track 
3 (Vicon Motion Systems, Oxford, UK), for measuring the reference measures and a 10 Bonita B10 
motion-capture cameras (Vicon Motion Systems, Oxford, UK), with five cameras on each side of a 
straight path was used for the motion analysis. Results from this research evaluated signal features for 
gait event detection, the best candidate signal feature among nine gait features. As an outcome of this 
work, researchers were able to establish a method for estimating temporal gait which can be used further 
in cross-examination or analysis of patients suffering from different diseases.  

The geometrical method to estimate step length and its symmetry between two sides with the 



90 
 

measurement from four IMUs was attached to lower limbs [26]. The author used a 3D accelerometer 
with a range of ±8g and a 3D gyroscope with a range of ±1000°/s to estimate the step length and gait 
symmetry between two legs. The root means a square error of step length estimation was computed 
during the data analysis. Research also computed relative errors to compare their results with previous 
works. Healthy subjects had 5.4 cm or RMSE in step length and 3% RMSE in gait symmetry. While 
subjects with gait impairment had 9.6 cm and 14.7% RMSE in step length estimation and gait symmetry 
estimation respectively. 

2.2. Statistical and Machine Learning Algorithms 
Author Zheng and team conducted a feasibility study using machine learning and statistical 

approaches in identifying severe disturbances of gait and gait initiation in neurodegenerative diseases 
[27]. Gait data published by PhysioNet was used in the research which consists of gait records from 15 
patients with PD (Parkinson’s disease), 20 patients with HD (Huntington’s disease), 13 patients with 
ALS (Amyotrophic Lateral Sclerosis), and 16 healthy controls. Three supervised classification models 
Support Vector Machine, KStar, and Random Forest were used in the analysis with twelve measurement 
features like gait cycles, left stride interval, right stride interval, left swing interval, left stance interval, 
right stance interval, etc. These classification models across all seven binary classification problems 
exhibit an accuracy ranging from 73.23% to 93.96% and an AUC ranging from 0.80 to 0.93. SVM, KStar, 
and RF models predicted accuracy of 86.9%, 84.7%, and 84.9% with AUC of 0.91, 0.91, and 0.97 
respectively. 

Researchers used the 3d-accelerometer and a 3d-gyroscope to identify the spatial gait parameters 
(foot angle, stride length, and stride width) and temporal parameters (heel stride, toe-on contact time, 
stance time, stride time, and swing time) [28]. The research used a publicly available benchmark dataset 
and estimated stride length, width, and mediolateral change in foot angle up to −0.15 ± 6.09 cm, −0.09 ± 
4.22 cm, and 0.13 ± 3.78 degrees respectively. Research particularly focuses on the extraction of gait 
parameters to experiment with the results with Deep Convolutional Neural Networks. Error evaluation 
on the training set for 90/10% train/test split of the dataset was done. Two models were prepared and 
they estimated the error function to be 0.02 and 0.1 respectively. 

The accuracy of optimized solutions was evaluated for measuring spatiotemporal gait parameters 
[29,30]. Subjects were equipped with two wireless Inertial Measurements Units composed of a tri-axial 
accelerometer, triaxial gyroscope, and a triaxial magnetometer on their feet. The result considered 
temporal parameters HeelStrike (HS), ToeStrike (TS), HeelOff (HO), and ToeOff (TO) & spatial 
parameters StrideLength (LS). ANOVA test evaluated the mean and standard deviation of the relative 
error for stride length, gait time, and gait speed for the left and right foot. The overall mean and standard 
deviation error expressed in percentage for stride length, gait time, and gait speed were 1.1 ± 0.7 & 0.8 
± 0.5, 1.7 ± 0.9 & 1.0 ± 1.0, 3.4 ± 1.8 & 2.2 ± 1.1 respectively. Proposed statistical model for the 
evaluation of accuracy, research gained an overall accuracy of 1.1 ± 07% and 0.8 ± 0.5% for left and 
right sensors respectively during the evaluation of stride length. Recent work on gait monitoring and 
measurements has been carried out for Parkinson’s disease using Artificial Intelligence Based wearable 
gait monitoring [31]. Research focuses on monitoring and assessment of gait in patients with Parkinson’s 
disease and also proposes a wearable physiograph for qualitative and quantitative gait assessment by 
performing bilateral tracking of the foot biomechanics and unilateral tracking of the arm balance. AI-
based decision support is built using gait parameters in Convolutional Neural Network (CNN) with 95% 
accuracy, 90% sensitivity, and 95% precision. 

The gait pattern analysis research work has been carried out to understand its association with diseases 
such as Parkinson's disease, Alzheimer, Peripheral Arterial Disease, and Neuro-degenerative diseases. 
Research work on Gait Analysis to analyze the foot movement of elderly citizens has been carried out. 
However, inadequate research was carried out on cardiovascular disease and gait pattern analysis. 

Review of related work recommended a handful of works done on cardiovascular diseases and gait 
parameters together. The gait pattern analysis research work has been carried out to understand its 
association with diseases such as Parkinson's Disease, Alzheimer, Peripheral Arterial Disease, and 
Neuro-degenerative diseases. Research work on Gait Analysis to analyze the foot movement of elderly 
citizens has also been carried out. However, very little research was carried out on cardiovascular disease 
and gait pattern analysis. A research gap was identified in the analysis of cardiovascular disease with gait 
patterns. Limited work has considered the kinematic gait parameters for Gait Analysis. Very few datasets 
were available for exploring the Gait data. Among the literature which carried research on Gait Analysis 
and diseases, very few research considered the analysis with neural networks, and the ranking of features 
that were important in their research work wasn’t mentioned. This literature review shares different 
research gaps in data analysis, machine learning approaches, and technology algorithm development for 
doing research work in cardiovascular diseases. 
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3. Methodology 
A framework for Gait Analysis was designed to perform a scientific study on Gait Analysis and how 

one can identify whether the new subjects were healthy controls or cardiovascular patients. The research 
framework of Gait Analysis in Figure 1, involves several steps, including data collection, data 
preprocessing, feature extraction, data analysis, and interpretation: 

Data Collection: The first step involves collecting Gait data from individuals using sensors such as 
the MPU-6050, which can provide accurate measurements of gait parameters [29]. Data Preprocessing: 
The collected data may contain noise or artifacts that need to be removed before analysis. Research 
collected sensor data which was preprocessed using signal filtering technique. Feature Extraction: Gait 
Analysis involves extracting meaningful features from the preprocessed data, such as stride length, step 
width, and walking speed. These features can be extracted using signal processing techniques and 
statistical methods. Data Analysis: The extracted features are then analyzed using machine learning 
algorithms to identify patterns and relationships between the gait parameters and specific health 
conditions. 

Interpretation: Finally, the results of the analysis are interpreted to provide insights into the 
individual's physical function and mobility. The interpretation of the results can be used for the diagnosis 
and management of various health conditions in cardiovascular disease. 

 

Figure 1. Research Framework of Gait Analysis. 

3.1. Data Collection 
An Inertial Measurement Unit (IMU) consisting of Raspberry PI 3 Model B, MPU-6050 Tri-axial 

Gyroscope, & Tri-axial Accelerometer was developed. The hardware setup was inspired by the 
experimentation model set up by Fitriani and the team [32]. IMU developed was fixed on the shoes of 
research participants which included 16 healthy controls and 53 patients with cardiovascular diseases. 
Subjects were asked to walk 10 meters in order to collect their Gait data. The characteristics of subjects 
who participated in the Gait Analysis are shown in Table 1. 
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Table 1. Characteristics of participants of Gait Analysis 

Parameters Cardiovascular Patients (N=53) Healthy Controls (N = 16) 

Men/Women(n) 28/25 5/11 

Height(cm) 161.79 ± 11.53 162.88 ± 10.85 

Weight(kg) 63.57 ± 11.52 62.19 ± 10.23 

BMI(kg/m2) 24.30 ± 4.24 23.49 ± 3.64 

Age(years) 44.58 ± 17.01 32.44 ± 6.20 

Total of nine features: Number of strides, Stride length, Stride time, Walking time, Stride frequency, 
Stride velocity, Stride cadence, Stance time, and Swing time were considered in this research. The Data 
acquisition method and initial analysis result is published at IEEE Conference [29]. Raw data collected 
by the IMU went through data/signal processing using a Butterworth low-pass filter [29].  

In receiving data from various wireless-sensor networks, one important part is to follow protocols 
and methodologies for data integrity. The actual data received from the sensor should be preserved and 
aggregated as suggested by the research paper [33]. To ensure data can be understood well as a part of 
signal processing Butterworth low pass filter algorithm is used which helps in reducing the high-
frequency data and the walking trembles. Equation (1) illustrates the formula given below: 

Ǵ(𝜔𝜔) =
1

√1 + 𝜔𝜔2𝑛𝑛
 (1) 

where ω is the angular frequency in radians per second and n is the number of poles in the filter equal 
to the number of reactive elements in a passive filter. Figure 2 displays the graph representing data 
received from the IMU after signal calibration. After the noise cancellation, the tri-axial data were 
calibrated by applying Signal Vector Magnitude on the tri-axial data received from the sensor. 
Equation (2) is shown below: 

SMVω(k) = √[ωlx(k)2 + ωly(k)2+ ωlz(k)2], (2) 

where, ⍵lx(k), ⍵ly(k), and ⍵lz(k) are the angular velocities of X, Y, and Z-axis in K time. 
Data was stored in a database and treated as a DataFrame in Pandas, a library available in Python 

programming language [34]. After data calibration, a dataset was prepared which has 69 rows and nine 
features, Number of strides, Stride length, Stride time, Walking time, Stride frequency, Stride velocity, 
Stride cadence, Stance time, and Swing time. The Gait dataset consists of a proportion of data between 
healthy and cardiovascular patients that is 25:75 in percentage. 
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Figure 2. Graph of tri-axial MPU-6050 sensor data after calibration. 

3.2. Gait Data Augmentation Algorithm 
Analysis and results of the dataset collected from IMU are shared in Results Section 4. Next, a Gait 

Data Augmentation Algorithm(GDAA) (Algorithm 1) was developed with the assumption of minimum 
and maximum values for each parameter to be that from the previous dataset. A literature study presented 
that researchers used dataset available in different data portals and implemented them in their research 
as a secondary source of data [11,12,23]. Augment requires the same proportion of Healthy Controls and 
Patients. The Gait parameters should be within the range of values in the original dataset. The data 
augmentation algorithm is presented below: 

Initially, the dependent and independent gait features are highlighted in their respective lists, 
minimum and maximum of independent parameters are calculated. For a range defined by the integer k, 
for all the independent parameters data is generated using a random function generator. The minimum 
and maximum values of each parameter define the range of random function generators. Those minimum 
and maximum values are calculated from the input file’s data range. Generation of independent Gait data 
using a random function generator takes place in steps 8–11. For all four independent parameters, random 
data is generated and appended to the list respectively. The implementation of this random data 
generation involves four functions that call random functions separately using their min and max data 
range. As four functions do the same task repeatedly steps 8–11 in the algorithm are condensed. 

Generation of dependent Gait data takes place in steps 12–15. For all the dependent gait parameters, 
data is calculated using their respective formula. The dependent gait parameters formula includes some 
independent gait features generated at that instant of for loop steps 8–11. Calculation of dependent Gait 
data functions in steps 12–15 includes five functions for each dependent gait parameter. Since the 
calculation of five different parameters is a similar task, the steps are condensed in the algorithm. Each 
Gait data is appended in their respective lists. At the end of a single iteration, all parameters will have a 
value, and those values are stored in the respective lists which are initially empty. As the loop ends, all 
lists are grouped i.e., zipped into a single list. That list is then converted into a new data frame which is 
then exported as a CSV file in the desired directory. 

To evaluate the significance of augmented data from the above algorithm One Way Analysis of 
Variance test was chosen [9,14]. One Way ANOVA test ensures that the data of Healthy Controls and 
Cardiovascular patients differ significantly from each other compared with individual gait parameters. 
With the statistical analysis, the gait parameters of patients with Cardiovascular Diseases deferred from 
that of HCs. The p-value which examined the level of significance was less than 0.05 (5% level of 
significance). 
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Algorithm 1. Gait Data Augmentation Algorithm (GDAA) 

Input: Gait Dataset file as a Dataframe 
List: Empty list of all features from Gait Dataset 
Integer: k 
Output: Augmented Gait Dataset 
 
1:  Start 
2:  Convert Input file as a DataFrame. 
3: Independent[] ← Independent gait Features 
4: Dependent[] ← Dependent gait Features 
5:  Calculate Minimum and Maximum of the Independent[] gait  
 parameters 
6: For values in Range(0, k): 
7:  Append the subject title to the empty list 
8:  Function Calls: GenerateStrideTime(); 
GenerateStrideCount();GenerateSwingTime(); GenerateStanceTime(); 
9:    Generate Stride Time, Generate Stride Count,  
   Generate Swing Time & Generate Stance Time 
10:   Append Stride Time, Stride Count, Swing Time &  
   Stance Time to the list 
11:  End Function 
12:  Function Calls:CalculateStrideLength(); CalculateStrideFrequency();  
   CalculateWalkingTime(); CalculateStrideFrequency();  
   CalculateStrideCadence(); 
13:   Calculate Stride Length, Calculate Stride Frequency,  
    Calculate Walking Time, Calculate Stride Frequency,  
   Calculate Stride Cadence 
14:   Append Stride Length, Stride Frequency, Walking Time,  
  Stride  Frequency, Stride Cadence to the list. 
15:  End Function 
16: End For 
17: Zip the lists which have generated data 
18: Create a dataframe from the zipped list 
19: Store final value as CSV to the directory 
20:End 

 

4. Experiments and Results 
This section describes the results experimented with the machine learning models for the dataset 

generated by the IMU and augmented data. Analysis was done using k-Nearest Neighbors, Classification 
and Regression Tree, Support Vector Machine, Naive Bayes, and Logistic Regression models. Data 
analysis was conducted using a Neural Network with 100 neurons in hidden layers and ReLu (Rectified 
Linear Unit) as the activation function for 80 no. of iterations maximum. The experimentation was done 
first with the original dataset where the accuracy calculation listed in Table 2 below was performed with 
ten cross-fold validation. 
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Table 2. Accuracy calculation of Classification Models (A). 

Model CA F1 Precision Recall 

k-Nearest Neighbors 0.93 0.931 0.936 0.93 

Classification & R Tree 0.95 0.95 0.951 0.95 

Support Vector Machine 0.973 0.973 0.975 0.973 

Naive Bayes 0.882 0.888 0.915 0.882 

Logistic Regression 0.955 0.954 0.955 0.955 

Neural Network 0.986 0.986 0.986 0.986 

Table 3 is the results of accuracy calculation of the augmented dataset of the same size that is 69 
rows. A dataset of sizes 69, 138, 207, 345, and 414 was generated with the augmentation algorithm where 
the proportion is 75:25. 

Table 3. Accuracy calculation of Classification Models (B). 

Model CA F1 Precision Recall 

K-Nearest Neighbors 0.928 0.931 0.945 0.928 

Classification & R Tree 0.942 0.943 0.946 0.942 

Support Vector Machine 0.928 0.93 0.936 0.928 

Neural Network 0.971 0.972 0.974 0.971 

Naive Bayes 0.899 0.904 0.929 0.899 

Logistic Regression 0.884 0.886 0.89 0.884 

Comparing the result of the Augmented dataset and the original dataset of size 69 it was identified 
that besides Naive Bayes there wasn’t any gain in the classification results. However, the results are 
above 90% on average, which can be considered for accepting augmented data. Also, these results have 
improved with the increase of the augmented dataset in the section below. The classification results of 
the augmented dataset were near to that of the real dataset. Classification Analysis of Augmented Data 
for all dataset sizes was performed. The result favored optimum results for an augmented dataset of size 
276(212P-64H). The result is shown in Table 4. 

Table 4. Classification Analysis of Augmented Data. Data Size: 276(212P-64H). 

Model CA F1 Precision Recall 

K-Nearest Neighbors 0.953 0.954 0.957 0.953 

Classification & R Tree  0.978 0.978 0.979 0.978 

Support Vector Machine 0.975 0.975 0.977 0.975 

Neural Network 0.982 0.982 0.983 0.982 

Naive Bayes 0.96 0.961 0.966 0.96 

Logistic Regression 0.942 0.942 0.943 0.942 

The gain in Classification accuracy, precision, recall, and F1 score were reflected in models like k-
Nearest Neighbors, Classification and Regression Tree, and Naive Bayes. The last gain was observed 
with the model Support Vector Machine. The optimum results for the augmentation data were observed 
for the data size 276(212P-64H). The optimum result for neural network analysis was observed after 
experimenting with the analysis in several iterations shown in Table 5. 
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Table 5. Neural network analysis with varying iterations. 

Model CA F1 Precision Recall 

80 0.975 0.975 0.977 0.975 

90 0.975 0.975 0.977 0.975 

100 0.975 0.975 0.977 0.975 

110 0.978 0.979 0.98 0.978 

120 0.978 0.979 0.98 0.978 

130 0.978 0.979 0.98 0.978 

140 0.982 0.982 0.983 0.982 

150 0.982 0.982 0.983 0.982 

160 0.982 0.982 0.983 0.982 

Increasing the number of iterations to 140 iterations the optimum classification results were 98.2% 
accuracy, 98.2% F1 Score, 98.3% precision, and 98.2% recall. Research [35] suggests explainability as 
a powerful tool for justifying AI-based decisions. Extended work is carried out by classifying three 
different feature sets: (a) Dependent Gait Features, (b) Independent Gait Features, and (c) Dependent and 
Independent Features. This explains the importance of Gait features in this research. 
Different measures such as ANOVA score, Information Gain, Gini, and chi-square test (χ²) have been 
calculated for the feature ranking purpose [15,36–38]. Recent research on feature ranking analysis such 
as Distribution Shapley values [39] could be another measure for the feature ranking. Since prominent 
literature has used Info. gain, Gini, ANOVA, and χ² Distribution Shapely values method will be a work 
for future research publication. Table 6 highlights the scores of features based on different measures in 
descending order. 

Table 6. Feature Ranking of Dependent Gait Parameters. 

Dependent Features ANOVA χ² Info. gain Gini 

Stride Velocity 518.0020 112.3012 0.5382 0.2606 

Avg. Stride length 299.1685 83.2432 0.3771 0.1723 

Walking Time 164.7313 112.3012 0.5382 0.2606 

Stride Frequency 90.3104 57.2965 0.2834 0.1077 

Stride Cadence 90.3104 57.2965 0.2834 0.1077 

Stride Count, Avg. Stance time, Stride time, and Avg. Swing Time is an independent gait feature 
present in the Gait dataset. Table 7 highlights the scores of features based on different measures in 
descending order.  

Table 7. Feature Ranking of Independent Gait Parameters. 

Independent Features ANOVA χ² Info. gain Gini 

Stride Count 0.4010 0.1792 174.2995 89.0274 

Avg Stance Time 0.3140 0.1285 110.0343 74.2617 

Stride Time 0.2834 0.1077 83.2225 57.2965 

Avg Swing Time 0.1320 0.0478 19.6426 15.6768 

Among Independent gait features Stride Count has higher Information Gain, Gini score, ANOVA, 
and χ². Followed by the Stride Count, Average Stance Time has second ranking then Stride Time is third 
and fourth Average Swing Time. Among dependent gait features Walking Time has higher Info. Gain, 
Gini, and χ². Followed by Walking Time, Stride Velocity has the second-ranking, Average Stride length 
has the third rank, Stride Frequency has the fourth, and finally, Stride Cadence has the fifth ranking. 
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Third feature ranking i.e., ranking all features as a whole is shown in Table 8. 

Table 8. Feature Ranking of entire gait features. 

Independent Features ANOVA χ² Info. gain Gini 

Walking Time 0.5382 0.2606 164.7313 112.3012 

Stride Velocity 0.5382 0.2606 518.0020 112.3012 

Stride Count 0.4010 0.1792 174.2995 89.0274 

Avg. Stride length 0.3771 0.1723 299.1685 83.2432 

Avg. Stance Time 0.3140 0.1285 110.0343 74.2617 

Stride Time 0.2834 0.1077 83.2225 57.2965 

Stride Cadence 0.2834 0.1077 90.3104 57.2965 

Stride Frequency 0.2834 0.1077 90.3104 57.2965 

Avg. Swing Time 0.1320 0.0478 19.6426 15.6768 

Results after ranking the features as a whole are slightly different from ranking independent and 
dependent features separately. Average Stance Time held the second rank while evaluated among 
independent features. Average Stance Time decreased its rank to the fifth position. Stride count which 
was the first in independent feature evaluation is now in the third rank. Research also includes feature 
importance using Explained Variance Ratio of the principal components [40]. Figure 3 illustrates the 
variance ratio of Gait features. 

 
Figure 3. Explained Variance Ratio of Principal Components. 

Stride Count is the most important gait feature followed by Avg. Stride Length, Stride Time and 
Walking Time. Rest of the features are least significant. Research incorporates all nine gait features for 
classification analysis, feature ranking and significance of data. Explainable AI(XAI) suggests an 
Example-based explanation as one of the techniques for making results interpretable [34]. Research 
presents such an example to describe the minimum conditions in Tables 9 and 10, that would have led to 
an alternate decision(pathological or healthy gait). Such an approach is presented as an unconditional 
counterfactual explanation because we won’t need to describe the full logic of the algorithm [41]. 
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Table 9. Testing Dataset for Prediction. 

No. of 
Stride 

Avg. 
Stride 
Length  

Stride 
Time 

Walking 
Time  

Stride 
Frequenc
y 

Stride 
Velocity 

Stride 
Cadence 

Avg 
Swing 
Time 

Avg 
Stance 
Time 

11 0.909 2.175 23.928 0.459 0.417 27.582 0.854 0.865 

16 0.625 1.547 24.76 0.646 0.403 38.771 0.894 0.636 

6 1.66 0.985 5.910 1.015 1.691 60.908 0.669 0.327 

8 1.25 1.111 8.889 0.899 1.124 53.998 0.701 0.305 

Table 10. Prediction Results of Test Data. 

Test No. 
Neural 
Network Naive Bayes kNN 

Logistic 
Regression Tree SVM 

1 
1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

1.00 : 
0.00→ 0 

2 
1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

1.00 : 0.00 
→ 0 

3 
0.00 : 1.00 
→ 1 

0.00 : 1.00 
→ 1 

0.00 : 1.00 
→ 1 

0.02 : 0.98 
→ 1 

0.02 : 0.98 
→ 1 

0.01 : 0.99 
→ 1 

4 
0.00 : 1.00 
→ 1 

0.00 : 1.00 
→ 1 

0.00 : 1.00 
→ 1 

0.52 : 0.48 
→ 0 

0.02 : 0.98 
→ 1 

0.31 : 0.69 
→ 1 

Result 0 in the prediction Table 10 refers to pathological gait and 1 means healthy gait. When a new 
subject is provided in the prediction model, prediction undergoes the trained model and predicts whether 
the subject has a normal gait or a pathological gait. The proposed model predicts the result with an 
accuracy of 97%. 

5. Conclusions and Future Work 
This research performed rigorous work on analyzing the difference between the gait patterns of 

healthy versus patients with cardiovascular diseases. An Inertial Measurement Unit was developed for 
collecting data. The collected data went through calibration and signal processing with the Butterworth 
Low Pass algorithm and Signal Vector Magnitude algorithm to ensure noise was reduced and accurate 
data was received. The significance of data received from IMU was ensured via the One-Way ANOVA 
test. Analysis of generated data was done via multiple machine learning algorithms, with accuracy 
ranging from 88.2% to 98.6%.  

Development of Gait data augmentation residing within the limitation of the real dataset, the 
performance of classification accuracy of augmented data, identifying independent and dependent gait 
parameters and their ranking using Info. Gain, Gini, ANOVA, and χ² methods are the key highlights of 
this research work. In addition to these, a prediction model was proposed that predicts whether the gait 
pattern of the new subject is pathological or healthy gait with an average of 97%. This research included 
all nine features in the classification analysis regardless of their feature importance identified by principal 
component analysis. Research focused on identifying significance of dependent and independent gait 
features in this research. Research can be extended by conducting dimensionality reduction. 

This research can be further extended by experimenting with the classification accuracy of the Gait 
dataset increasing the gait parameters. We can also conduct the same experiment with the same gait 
features but classify disease categories that fall under cardiovascular diseases. This will give us a 
perspective on which cardiovascular disease has a greater effect on gait movement. This can also create 
a standard dataset for machine learning models that want to experiment and analyze Gait data. 



 
 

99 
 

Author Contributions 
Conceptualization, R.B., S.S. and J.C.F.; Methodology, R.B., S.S., and J.C.F.; Software, S.S. R.B. and J.C.F.; 
Validation, R.B. and J.C.F.; Formal analysis, R.B. and J.C.F.; Investigation, R.B. and J.C.F.; Resources, R.B.; Data 
curation, R.B., S.S. and J.C.F.; Writing—original draft preparation, R.B.; Writing—review and editing, R.B., S.S. 
and J.C.F.; Visualization, S.S., R.B. and J.C.F.; Supervision, R.B.; Project administration, S.S., R.B. and J.C.F. All 
authors have read and agreed to the published version of the manuscript. 

Funding 
We would like to express our sincere gratitude to Nepalese Education in E-health Masters (NEEM) project under 
GA101083048 at Health Informatics Lab in Kathmandu University for supporting this research. This work was 
supported by the project “BLOCKCHAIN.PT(RE-C05-i01.01-Agendas/ Alianças Mobilizadoras para a 
Reindustrialização, Plano de Recuperação e Resiliência de Portugal na sua componente 5—Capitalização e Inovação 
Empresarial e com o Regulamento do Sistema de Incentivos “Agendas para a Inovação Empresarial”, aprovado pela 
Portaria N.° 43-A/2022 de 19.01.2022). 

Conflict of Interest Statement 
The authors declare no conflicts of interest. 

Data Availability Statement 
Dataset will be made available for research purposes. Researchers can reach out to the Correspondence via email for 
the dataset request. 

References 
1. Bhavnani, S. P., Narula, J., & Sengupta, P. P. “Mobile technology and the digitization of healthcare.”European 

Heart Journal. 2016, Volume 37(18), pp. 1428–1438. doi:10.1093/eurheartj/ehv770 
2. Nilpanapan, Thirawut, Kerdcharoen, and  Teerakiat. Social data shoes for gait monitoring of elderly people in 

smart homes. The 2016 Biomedical Engineering  International Conference (BMEiCON-2016), 2016. 
3. Ghoussayni, S., Stevens, C., Durham, S., Ewins, D. Assessment, and validation of a simple automated method 

for the detection of gait events and intervals. Gait Posture. 2004, Volume 20, pp. 266–272. 
4. Lai, D. T. H., Begg, R. K., & Palaniswami, M. Computational Intelligence in gait  Research: A Perspective on 

Current Applications and Future Challenges. IEEE Transactions on Information Technology in Biomedicine. 
2009, Volume 13(5), pp.  687–702.   doi:10.1109/titb.2009.2022913 

5. Tanwar, R.; Nandal, N.; Zamani, M.; Manaf, A.A. Pathway of Trends and Technologies in Fall Detection: A 
Systematic Review. Healthcare 2022, 10, 172. https:// doi.org/10.3390/healthcare10010172 

6. Rana, P., & Aggarwal, A. (2019). Gait Analysis for early identification of cardiovascular diseases using the 
MPU-6050 sensor. Journal of Medical Systems, 43(8), 226. 

7. Wang, X., Wu, H., & Xie, Y. (2021). A Gait Analysis framework for cardiovascular disease prediction using 
MPU-6050 sensor data. IEEE Access, 9, 55759-55771. 

8. Yao, Y., Song, M., & Lu, Z. (2021). Early identification of cardiovascular disease using Gait Analysis with 
the MPU-6050 sensor. IEEE Journal of Biomedical and Health Informatics, 25(9), 3352-3362. 

9. Zhang, Y., & Yang, H. (2020). A prediction model for early identification of cardiovascular disease using Gait 
Analysis with the MPU-6050 sensor. Journal of Medical Systems, 44(7), 151. 

10. Zhang, H., Li, Y., & Liu, B. (2019). Early identification of cardiovascular disease using Gait Analysis with the 
MPU-6050 sensor: A systematic review. IEEE Access, 7, 62171-62182. 

11. Aminian, K., Najafi, B., Büla, C., Leyvraz, P., and Robert, P. Spatiotemporal parameters of gait measured by 
an ambulatory system using miniature gyroscopes. Journal of Biomechanics, Volume 35(5), 2002, pp. 689–
699. doi:10.1016/s0021-9290(02)00008-8 

12. Nandy, A. and Chakraborty, P., "A new paradigm of human Gait Analysis with Kinect," 2015 Eighth 
International Conference on Contemporary Computing (IC3),2015, pp. 443-448, doi: 
10.1109/IC3.2015.7346722. 

13. Huang, C.; Fukushi, K.; Wang, Z.; Nihey, F.; Kajitani, H.; Nakahara, K. Method for Estimating Temporal Gait 
Parameters Concerning Bilateral Lower Limbs of Healthy Subjects Using a Single In-Shoe Motion Sensor 
through a Gait Event Detection Approach. Sensors 2022, 22, 351. https://doi.org/10.3390/s22010351 

14. Mileti, I., Taborri, J., Alvia, L., Parisi, S., Ditto, C. M., Peroni, L. C., Rossi, S., Fusaro, E., Prete, D. Z., Palermo, 
E. Accuracy Evaluation and Clinical Application of an Optimized Solution for Measuring Spatio-Temporal 
gait Parameters. 2020 IEEE International Symposium on Medical Measurements and Applications. 2020. 

15. Huang, C.; Fukushi, K.; Wang, Z.; Nihey, F.; Kajitani, H.; Nakahara, K. Method for Estimating Temporal Gait 
Parameters Concerning Bilateral Lower Limbs of Healthy Subjects Using a Single In-Shoe Motion Sensor 
through a Gait Event Detection Approach. Sensors 2022, 22, 351. https://doi.org/10.3390/s22010351 

16. Wang, L., Sun, Y., Li, Q., & Liu, T. Estimation of Step Length and Gait Asymmetry Using Wearable Inertial 
Sensors. IEEE Sensors Journal, 2018, Volume 18(9), pp. 3844–3851.doi:10.1109/jsen.2018.2815700 

17. Hsu, Y. L., Chung P., Wang H., Pai M., Wang C. Wang j. gait and Balance Analysis for Patients With 
Alzheimer’s Disease Using an Inertial-Sensor-Based Wearable Instrument. IEEE Journal of Biomedical and 
Health Informatics. 2014, Volume 18, pp. 1822-1830.g 

18. Ippei, K., Hidetaka, A., Kikuta, K. Kinetic and kinematic Gait Analysis in a spastic hemiplegic patient after 
selective tibial neurotomy: A case report.  Neurology Asia. 2015, Volume 20(4): pp. 395-399 

https://doi.org/10.3390/s22010351
https://doi.org/10.3390/s22010351


100 
 

19. Stebbins J, Harrington M, Stewart C. Clinical gait analysis 1973-2023: Evaluating progress to guide the future. 
J Biomech. 2023 Oct 10;160:111827. doi: 10.1016/j.jbiomech.2023.111827. Epub ahead of print. PMID: 
37844470. 

20. Petrone, N., Vanzetto, D., Marcolin, G., Bruhin, B., & Gilgien, M. The effect of foot setting on kinematic and 
kinetic skiing parameters during giant slalom: Journal of Science & Medicine in Sport. 2020. 

21. Pulignano, G., Sindaco, D. D., Lenarda, A. D., Alunni, G., Senni, M., Tarantini, L., Uguccioni, M. Incremental 
Value of gait Speed in Predicting Prognosis of Older Adults With Heart Failure. Insights from the IMAGE-
HF study, 2016, pp. 289-298. 

22. Hsui.H, Yang Y-L., Lin J-C. and Wu Z-H. A Wearable Inertial Measurement System With Complementary 
Filter for Gait Analysis of Patients With Stroke or Parkinson’s Disease Changi. IEEE Access, 2016, 
doi:10.1109/ACCESS.2016.2633304 

23. Clark, R. A., Bower, K. J., Mentiplay, B. F., Paterson, K., & Pua, Y.-H. Concurrent validity of  the Microsoft 
Kinect for assessment of spatiotemporal gait  variables. Journal of Biomechanics. 2013, Volume 46(15), pp. 
2722–2725. doi:10.1016/j. jbiomech.2013.08.011 

24. Allseits, E., Lučarević, J., Gailey, R., Agrawal, V., Gaunaurd, I., and Bennett, C. The development and 
concurrent validity of real-time algorithm for temporal Gait Analysis using inertial measurement units. Journal 
of Biomechanics. 2017, Volume 55, pp. 27–33. doi:10.1016/j.jbiomech.2017.02.016  

25. Rancho Los Amigos Medical Center. Observational Gait Analysis Handbook. The Professional Staff 
Association of Rancho Los  Amigos Medical Center, 1989. 

26. Sina, A., Fazel, N., David, S., Golshah, N., and Morteza, A. Objective Clinical Gait Analysis Using Inertial 
Sensors and Six Minute Walking Test, Pattern Recognition, 2016, doi:10.1016/j.patcog.2016.08.002 

27. Yang, S., Laudanski, A., & Li, Q. Inertial sensors in estimating walking speed and inclination: an evaluation 
of sensor error models. Medical & Biological Engineering & Computing, 2012, Volume 50(4), pp. 383–393. 
doi:10.1007/s11517-012-0887-7 

28. Lee, J. K., & Park, E. J. Quasi-real-time gait event detection using shank-attached  gyroscopes. Medical and 
Biological Engineering and Computing, 2011, Volume 49(6), pp.  707–712. 

29. S. Joshi, S. Khanal, and R. Bista, "Spatiotemporal Gait Analysis for Cardiovascular Disease," 2022 14th 
International Conference on Software, Knowledge, Information Management and Applications (SKIMA), 
Phnom Penh, Cambodia, 2022, pp. 181-186, doi: 10.1109/SKIMA57145.2022.10029510. 

30. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). 
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward 
responsible AI. Information fusion, 58, 82-115 

31. Fitriani, D. A., Andhyka K, W., Kom. S., Kom, M., Risqiwati, D. T. Design of Monitoring System Step 
Walking With MPU-6050 Sensor Based Android. Journal of Informatics, Network, & Computer Science, 2017, 
pp. 1-8. doi:10.21070/ joincs.v1i1.799 

32. Bista, R., & Chang, J.-W. Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks: A 
Survey. Sensors, 2010, 10(5), 4577–4601. doi:10.3390/s100504577 

33. Pandas Dataframe, Available Online: pandas.pydata.org/DataFrame (Accessed on Aug 13, 2022) 
34. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on Explainable Artificial Intelligence 

(XAI). IEEE Access, 1–1. doi:10.1109/access.2018.2870052 
35. Downey, CA. Rastegari, E., Azizian, S., and Ali, H. Machine Learning & Similarity Network Approaches to 

Support Automatic Classification of Parkinson’s Diseases Using Accelerometer-based Gait Analysis. 
Proceedings of 52nd Hawaii International Conference on System Sciences, 2019, pp. 4231-4242. 

36. Zheng, H., Yang, M., Wang, H., & McClean, S. Machine Learning Statistical Approaches to Support 
Discrimination of Neuro-degenerative Diseases Based on Gait Analysis. Intelligent Patient Management, 2009, 
pp. 57–70. doi:10.1007/ 978-3-642-00179-6_4  

37. Kwon, Y., Rivas, A. M., Zou. J., “Efficient computation and analysis of distributional shapley values” 
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:793-
801, 2021. 

38. Zhang, H., Guo, Y., & Zanotto, D. Accurate Ambulatory Gait Analysis in Walking and Running Using 
Machine Learning Models. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2019. 

39. S. Wachter, B. Mittelstadt, and C. Russell. (2017). ‘‘Counterfactual explanations without opening the black 
box: Automated decisions and the GDPR.’’ [Online]. Available: https://arxiv.org/abs/1711.00399 

40. X. Yuan, P. He, Q. Zhu, and X. Li. (2017). ‘‘Adversarial examples: Attacks and defenses for deep learning.’’ 
[Online]. Available: https://arxiv.org/abs/1712.07107 
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