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Abstract: Skin cancer has been steadily growing for decades and is now the most prevalent form of cancer in humans. 
Recently, there has been a remarkable increase in the incidence of skin cancer. This presents a challenge as skin 
cancer lesions come in intricate and varied shapes and textures, making diagnosis difficult even for experts. To tackle 
this problem, the main objective of this paper is to utilize image classification techniques to diagnose skin cancer. 
Artificial neural networks, particularly convolutional networks, have shown great success in this field to distinguish 
between malignant and benign tumors. By leveraging the strengths of both Support Vector Machine and 
Convolutional Neural Network, we strive to improve the overall performance of skin cancer diagnosis. For 
experimentation, we used the ISIC dataset, which contains a collection of photos for melanoma skin cancer. 

Keywords: skin cancer; classification; support vector machine; convolutional neural network; deep 
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1. Introduction  
The skin is the body’s largest organ and serves to cover and protect muscles, bones, and other organs. 

Its function is vital, as even small changes in its functioning can have widespread effects on the rest of 
the body. The skin is exposed to the external environment, making it susceptible to diseases and 
infections. Skin lesions often serve as the first clinical sign of diseases such as varicella and  
melanoma [1]. 

As the largest organ of the human body, the skin plays a crucial role in maintaining balance and 
safeguarding the body against external aggressions, including mechanical shocks, ultraviolet rays, and 
temperature changes. To understand the mechanical behavior of the skin, it is necessary to differentiate 
its key structural elements that contribute to its mechanical properties. This is important for developing 
a comprehensive understanding of the skin's mechanical behavior. Fitzpatrick's skin type classification 
system was developed to describe how different skin types respond to sun exposure and their associated 
cancer risks. It is essential to consider skin type when addressing skin-related issues, as certain conditions 
may favor the development of specific skin types over others. However, many studies in the literature on 
computer-aided diagnostic systems do not specify the skin type used. It is worth noting that most of the 
samples identified in such studies appear to be type I and type II on the Fitzpatrick scale [2]. 

The rest of the paper is organized as follows: Section 2 presents the field of automated Skin Lesions 
Diagnosis. In Section 3, we present the related works of the skin cancer detection and classification. 
Section 4 describes the materials and methods used in this work. In Section 5, we present and analyze 
experimental results. Conclusions and future work are given in Section 6. 
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2. Automated Skin Lesions Diagnosis 
Skin cancer is one of the most active types of cancer in the present decade [3]. It was the fourth most 

common cancer in 2020 [4]. In fact, abnormal skin cells grow spontaneously, invade nearby tissues, or 
spread throughout other parts of the body. There are both benign and malignant lesions on the skin. In 
this section, skin lesions imaging modalities and the used datasets in this field are presented. 

2.1. Skin Lesions Imaging Modalities 
Medical imaging has become a formidable diagnostic tool for physicians. There are more and more 

ways of obtaining image information and the number of processed images is also increasing. A medical 
image is characterised essentially by its resolution, the clarity and fine detail that a monitor or printer 
achieves when producing an image. Since skin cancer detection in early stage of his development 
increases considerably the chances of obtaining a successful treatment prescription. Several skin cancer 
screening methods are proposed and among which we cite: 
 Magnetic Resonance Imaging (MRI) 
 Ultrasonography (US) 
 Spectrophotometry (SP) 
 Laser Doppler perfusion imaging (LDPI) 
 Confocal Microscopy (CM) 
 Optical Coherence Tomography (OCT) 
 Dermoscopy (ELM) 
Some advantages and drawbacks of each modality is presented in Table 1. 

Table 1. Skin cancer modalities. 
Modality Advantages Drawbacks Dataset  

Samples 
MRI Offers detailed images. 

Can assess tumor depth. 
Images from various angles, 
enhancing diagnostic accuracy. 

Limited resolution missing 
small or superficial lesions. 
More expensive than other 
imaging techniques. 
May not always distinguish 
benign from malignant lesions 
accurately. 

Dermnet [5] 

US Non-invasive, making it 
suitable for regular monitoring. 
Real-time imaging. 
More cost-effective compared 
to other imaging modalities. 

Limited depth penetration 
quality and interpretation 
Depend on the skill and 
experience of the operator. 
May have lower resolution 
compared to other imaging 
modalities. 

Ultrasound 
Dataset [6] 

SP High Resolution. 
Real-time Imaging. 
Non-invasive. 
accurate diagnosis of skin 
cancer by identifying specific 
cellular and morphological 
features associated with 
malignancy. 

Operator Dependency. 
Imaging equipment and 
software can be costly. 
Limited Depth of Penetration. 
May yield false-positive results, 
leading to unnecessary biopsies 
or treatments for benign lesions. 

ISIC [7] 

LDPI Valuable information about the 
vascularization of skin lesions. 
Non-invasive. 
Real-time Imaging. 
Enables quantitative analysis of 
blood flow parameters. 

Limited Specificity. 
Primarily assesses blood flow in 
superficial skin layers. 
Interpretation may require 
specialized training and 
expertise. 

American 
National 
Institutes of 
Health  
database [8] 
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CM High-resolution images of 
cellular structures in the skin. 
Real-time Imaging. 
High sensitivity and specificity 
for the diagnosis of melanoma. 

Limited Depth of Penetration. 
Equipment and software can be 
costly. 
False Positives. 

ISIC [7] 

OCT Promise in detecting and 
characterizing skin cancer, 
particularly non-melanoma skin 
cancers. 
High-resolution cross-sectional 
images of skin tissue. 

False-positive results, leading to 
unnecessary biopsies or 
treatments for benign lesions. 
limited accessibility for routine 
screening and clinical use in 
some healthcare settings. 

HHS  
Provider 
Relief Fund 
database [9] 

ELM Magnified and enhanced 
visualization of skin lesions 
Improved Diagnostic Accuracy. 
Non-invasive and Cost-
effective. 
Photographs obtained through 
dermoscopy can be archived for 
documentation and comparison. 

Variability in diagnostic 
accuracy among different 
practitioners. 
Limited Depth of Penetration. 
Some benign lesions may 
exhibit dermoscopic features 
that mimic those of malignant 
lesions. 

ISIC [7] 

2.2. Dermoscopic Skin Lesions Image Datasets 
Dermoscopy is a technique used to examine the structure of the skin. Observation-based detection 

techniques can be used to detect cancerous spots using dermoscopy images. The accuracy of dermoscopy 
depends on the training of the dermatologist. Melanoma detection accuracy can reach 75–85%. 
Diagnostics performed by the system help increase the speed and accuracy of diagnosis. Computers can 
extract certain information, such as asymmetry, color variations, texture features, etc. An automated 
dermoscopy image analysis system involves three steps: pre-processing, segmentation and extraction, 
and feature selection. 

In the realm of dermatology, datasets featuring skin lesion images are notably sparse, exacerbating 
the challenge of conducting reproducible research. Many existing datasets are either too small or 
inaccessible to the public, further hindering progress in the field. Notable examples of dermatology-
related datasets utilized in recent studies include: 
 Dermofit Image Library [10], developed by Edinburgh Innovations Ltd. at the University of 

Edinburgh, serves as the original dataset for training purposes. This comprehensive library 
comprises 1,300 high-quality dermofit images meticulously categorized into the ten most 
prevalent dermofit classifications: Malignant Melanoma, Basal Cell Carcinoma, Seborrheic 
Keratosis, Actinic Keratosis, Haemangioma, Dermatofibroma, Intraepithelial Carcinoma, 
Melanocytic Nevus, Pyogenic Granuloma, and Seborrheic Keratosis. Each image adheres to a 
standardized capture protocol and has undergone professional skin pathology detection. 

 Dermnet [5], constructed in 1998. This database comprises over 23,000 dermoscopic images 
showcasing a wide array of 643 distinct skin diseases. These conditions are systematically 
categorized into a dual-level taxonomy: the lower tier encompasses over 600 fine-grained skin 
diseases, while the upper tier classifies them into 23 broader categories including benign tumors, 
nevi, eczema, moles and melanomas. 

 ISIC archive [7], consolidates various databases and boasts a collection of 13,786 dermatoscopic 
images. Renowned for its permissive CC-0 licensing, meticulously structured availability, and 
expansive size, it has become the gold standard for research in dermatoscopic image analysis. 
Notably, the archive exhibits a bias towards melanocytic lesions, with 12,893 out of 13,786 
images depicting nevi or melanomas.  

 PH2 dataset comprises 200 images, with 160 images depicting naevi (including atypical and 
common naevi), and the remaining 40 images representing melanoma cases [11]. While pathology 
served as the definitive reference for melanoma diagnosis, such data was unavailable for most 
naevi. Due to its accessibility and rich metadata, the PH2 dataset has emerged as a pivotal 
benchmark dataset for research endeavors focusing on computer-aided melanoma diagnosis, 
maintaining its significance in the field up to the present day. 

 Atlas dataset [12] serves as a comprehensive medical educational resource containing over 1,000 
cases of pigmented skin lesions. Each case is meticulously documented with clinical and 
dermoscopic images, alongside rich clinical data such as lesion location, diameter, and elevation, 
as well as histopathological results, diagnosis, and the presence or absence of dermoscopic 
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attributes. These extensive metadata align with the educational objectives of the Atlas, aimed at 
facilitating teaching dermoscopy through reliable medical algorithms like the 7-point checklist. 

 The HAM10000 dataset [13] addresses the issue of diversity scarcity within skin lesion datasets. 
Comprising 10,015 dermoscopic images, it draws from two primary sources: Cliff Rosendahl’s 
skin cancer practice in Queensland, Australia, and the Dermatology Department of the Medical 
University of Vienna, Austria. Spanning a twenty-year period, this compilation process began 
before the widespread use of digital cameras. Initially, photographic prints of lesions were 
archived at the Dermatology Department of the Medical University of Vienna, Austria. 
Subsequently, these prints were digitized using a Nikon Coolscan 5,000 ED scanner, produced by 
Nikon Corporation Japan, and transformed into 8-bit color JPEG images with a 300 DPI 
resolution. Following digitization, each image was manually cropped and saved at a resolution of 
800 by 600 pixels at 72 DPI. 

2.3. Benign vs. Malignant Lesions 
Benign lesions are characterized as alterations that do not pose serious health risks to individuals. 

However, it is important to note that these lesions may occur in potentially dangerous areas of the body. 
One of the most prevalent benign lesions is melanocytic nevus, which often takes the form of round or 
oval structures on the skin's surface. These lesions can range in color from reddish pink to black and 
commonly develop during the first three decades of life. Types of melanocytic nevus include common 
moles, atypical moles, congenital moles, and Spitz nevus. Other examples of benign tumors include 
dermatomyomas, epidermal cysts, freckles, and moles. Conversely, in the context of this manuscript, the 
term "malignant" refers to cancerous pathologies that can persist until the death of the individual without 
appropriate professional intervention. Skin cancers are often the result of abnormal skin cell division or 
mutation, and the risk of death is primarily associated with the metastasis of the original tumor. Some 
skin cancers can be challenging to treat as they may recur without a sufficient margin of safety during 
resection. Additionally, these lesions can progress to advanced stages and may result in scarring and the 
loss of important body functions. Therefore, early detection and management of these lesions are crucial 
to limit the potential consequences and complications [14]. 

The term "malignant" in this manuscript refers to cancerous conditions that can persist until the 
person's death without appropriate professional intervention. These types of skin cancers occur due to an 
abnormal division or mutation of skin cells, and the risk of death is mainly due to the spread of the 
original tumor to other parts of the body. Some of these tumors can be challenging to treat as they may 
reoccur without a sufficient margin of safety during removal. Apart from the risk of death, these lesions 
may progress to advanced stages, depending on the type of tumor and the person's body genes, which 
can lead to scarring and other complications. Thus, it is crucial to detect and manage these lesions as 
soon as possible to limit their consequences and adverse effects. 

3. Related Work 
Skin cancer is a serious public health problem due to its increasing incidence and resulting high 

mortality rate. In this context, several researchers are working on this subject. 

3.1. Machine Learning 
A subfield of artificial intelligence called “machine learning” enables computers to learn from data. 

This section provides an overview of recent studies focusing on handcrafted feature extraction techniques. 
Elgamal and Mahmoud [15] employed wavelet transformation for feature extraction. The extracted 
features underwent dimensionality reduction before being utilized for classification tasks. For the 
classification of skin cancer based on clinical findings and the correlation of specific characteristics in 
dermoscopic images and tumor depth, the authors applied the k-nearest neighbor (k-NN) and artificial 
neural network (ANN) algorithms. Approximately 81 descriptors, derived from parameters such as color, 
texture, shape, and pigment network features, were extracted. To achieve classification, a combination 
of logistic regression and neural networks was employed, resulting in an overall accuracy of 95%. 

In [16], the authors presented a novel method that combines the characteristic bag approach with 
accelerated robustness features to extract entities and quadratic support vector machines for classification. 
Their proposed method achieved an accuracy of 85.7%, sensitivity of 100%, specificity of 60%, and a 
training time of 0.8507 seconds for lesion classification using the PH2 dataset for skin cancer. The 
authors also found that their method outperformed other advanced methods by 3%. 

In [17], the authors used dermoscopic images in RGB format to detect skin cancer early using the 
support vector machine algorithm. The images were segmented using the De-segmentation method, and 
features were extracted using the GLCM methodology. The support vector machine achieved a precision 
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of 95%. In [18], the authors proposed an intelligent diagnosis of skin cancer based on dermoscopy images 
using several variants of the particle swarm optimisation algorithm for optimisation functionality. They 
used pre-treatment to remove noise, segmentation, and extraction of characteristics of both the skin and 
lesion regions. The proposed algorithms were used to optimise functionality to identify the most 
significant discriminating characteristics of benign and malignant skin lesions. The authors proposed four 
new PSO variant algorithms, including Hybrid Learning PSO, PSO Variant Model, Adaptive Coefficient 
PSO, and Random Coefficient PSO, for the selection of features. These models addressed premature 
convergence problems of the original PSO algorithm using various research strategies. Simple and set 
classifiers were used to classify benign and malignant lesions. The proposed PSO variants outperformed 
other advanced and classical research methods to identify discriminating characteristics that facilitate the 
classification of benign and malignant lesions. The authors obtained a precision of 92.11% with the 
combination of GA and SVM algorithms and a precision of 90.53% with the combination of PSO and 
SVM algorithms using the same database. The Wilcoxon Rank Sum test was used to test the statistical 
superiority of the proposed algorithms over other methods. 

3.2. Deep Learning 
Deep artificial neural networks are used in the machine learning subfield known as deep learning to 

automatically learn hierarchical representations of data. It allows high-level feature extraction and better 
performance in complex tasks, often avoiding manual feature engineering. In [19], a novel approach to 
automatic skin lesion classification is introduced, leveraging the Ph2 dataset for training, which 
comprises 200 skin cancer images. To address the challenge of limited data, data augmentation 
techniques are implemented, expanding the dataset size to 6,600 images through image rotation. Transfer 
learning is then applied, utilizing the pretrained architecture of AlexNet. This involves updating the 
neural network's weights using the stochastic gradient descent (SGD) algorithm. Furthermore, the 
model's performance is assessed using key metrics including accuracy, precision, sensitivity, and 
specificity. Results demonstrate that the proposed model surpasses the performance of existing methods. 

In [20], the authors achieved a precision of 75% using the ANN algorithm on the ISIC database which 
contains RGB images. In their current work, they improved the algorithm by using functions such as 
ReLU, Gradient Descend, and Optimizers. In [21], the authors used convolution neural networks (CNN) 
on a database of 1,680 clinical images in RGB form, achieving an accuracy of 86.67%. They found that 
CNN requires less repossession algorithm compared to previous methods. In [22], the authors used a 5-
layer convolutionary neural network (CNN) to classify skin lesions, including melanoma, achieving 95% 
accuracy, 94% sensitivity, 97% specificity, and 100% AUC (area under the curve) on the PH² dataset of 
Dermoscopic images. 

Zhang et al. [23] examined the limitations of deep convolutional neural networks (DCNN) in 
accurately classifying skin lesions, particularly emphasizing their incapacity to prioritize semantically 
significant areas. Consequently, they propose an attention residual learning CNN as a remedy. This 
network consists of several attention residual learning blocks that leverage residual learning to effectively 
distinguish between images. Through experimentation on the ISIC-skin 2017 dataset, the proposed 
network demonstrates superior performance compared to other cutting-edge methodologies. 

In [24], the authors used the watershed method for segmentation, and KNN, Random Forest, and 
SVM classifiers on the ISIC database's RGB images to achieve precisions of 65.39%, 74.32%, and 
85.72%, respectively. SVM provided better results for the classification of skin lesions. In [25], the 
authors used two methods of image recognition: ResNet 50 as a deep learning convolutional neural 
network (DLCNN) and Support Vector Machine (SVM) for skin cancer classification. The ResNet 50 
DLCNN achieved a recognition rate of over 97% on the test images, while the SVM classifier reached 
an accuracy of 86.9%. 

Overall, CNN and SVM appear to be the most effective algorithms for skin lesion detection and 
classification, as evidenced by their high accuracy and precision scores. Table 2 presents state-of-the art 
approaches to skin cancer detection and classification. 
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Table 2. Summary of the main research on skin cancer detection. 
Author Dataset Image Type Technique Accuracy 

[20] (HAM 10000) 
ISIC. RGB ANN 75% 

[16] PH2 dataset Binary SVM 85.7% 
[21] 1680 clinical images RGB CNN 86.67 % 

[18] Dermofit dataset 
(1300) RGB  GA+SVM 92.11% 

PSO+SVM 90.53% 

[24] International Skin Imaging 
Collaboration (ISIC). RGB 

KNN 65.39% 
SVM 85.72% 

Random Forest 74.32% 

[25] 320 clinical images RGB SVM 86% 
CNN 97.80% 

[22] PH2 dataset  RGB CNN 95% 
[17] Dermoscopic images RGB SVM 95% 

4. Materials and Methods 
The proposed approach consists of creating a cancer skin detector based on machine learning and 

deep learning. It involves many steps, starting with data normalization and feature extraction. Next, we 
create a CNN model and apply data augmentation techniques. We then compare this approach with a 
combination of CNN and SVM. 

4.1. Data Augmentation 
The used dataset in this study was obtained from the International Skin Image Collaboration (ISIC) 

[7] archives and includes 1,800 images of benign moles and 1,497 images of malignant moles, all of 
which were resized to a low resolution RGB (224 × 224 × 3). The goal of this study was to develop a 
model capable of visually classifying moles as either benign or malignant. The dataset consists of two 
distinct classes of skin cancer: benign and malignant. Figure 1 displays some samples of the used dataset. 

 
Figure 1. Samples of ISIC images. 

By increasing the amount of data available for training, data augmentation can improve the 
performance and robustness of machine learning models. Figure 2 displays some samples of the used 
dataset after application of data augmentation. This technique is used to artificially increase the amount 
of data available for training machine learning models. It involves creating new data by applying 
transformations to existing data, such as resizing, flipping, rotating, cropping, or padding. This technique 
is useful for addressing problems such as overfitting and data scarcity, as it allows for the creation of 
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more diverse and representative datasets. In this work, we applied these function to the dataset to optimize 
training precision, resulting in an increase in instances from 3,297 to 20,580 (11,435 images of benign 
moles and 9,145 images of malignant moles). This is a significant increase in data that can lead to 
improved model performance; the model becomes more robust to variation and noise in real data. There 
are several techniques commonly used for data augmentation in machine learning. Here are some of the 
popular techniques: 

• Rotation: Rotating the image by a specific angle. 
• Flip: Flip the image horizontally or vertically.  
• Crop: Randomly crop part of the image.  
• Zoom: Enlarge or reduce the image.  
• Translate: Move the image horizontally or vertically.  
• Add Noise: Add random noise to the image. 

  
  

  
  

  
(a) (b) 

Figure 2. A slide of a skin lesions before (a) and after (b) data augmentation. 

4.2. Convolutional Neural Network 
Convolution Neural Networks (CNNs) are like the rockstars of image processing in the AI world. 

CNNs are primarily employed to resolve challenging image-based pattern recognition tasks [26,27]. 
While more computationally intensive than simple machine learning methods, CNNs offer better 
performance. CNNs are widely used in recommender systems, natural language processing, and image 
and video recognition. To accomplish the classification task, the CNN architecture presented in Figure 3 
was developed using Tensorflow Keras backend, and the results were analyzed to determine the model's 
potential usefulness in practical scenarios. 

The first part of the CNN is the convolution part. It acts as an image feature extractor. The image is 
passed through a series of filters, or convolution kernels, creating a new image called a folded graph. 
Some intermediate filters reduce the resolution of the image through local filters. Finally, the convolution 
maps are flattened and concatenated into feature vectors called CNN codes.  



124 
 

 

Figure 3. Used Convolution Neural Networks architecture. 

4.3 Support Vector Machines 
For skin cancer detection, machine learning models have been adopted due to their superior 

performance. Among these models is the Support Vector Machines (SVM), which is briefly discussed in 
this article for completeness. SVM is an algorithm mainly used to classify data into different categories, 
as described in [17,18]. Unlike most algorithms, SVM uses a hyper plane as the decision boundary 
between different classes. SVM can be used to create multiple splitting hyper planes to divide data into 
segments, with each segment containing only one type of data. SVM is also known as a "wide margin 
separator. They are part of supervised machine learning techniques that focus on classifying data sets 
into insightful groups. They are based on the concepts of decision plans and decision constraints. The 
objective of SVM is to find an ideal hyper plane that optimizes the distance between each data cluster's 
nearest points (See Figure 4).  

 
Figure 4. Support Vector Machine. 

A "support vector" is a collection of instances that are near the ideal hyperplane. Through careful 
kernel selection, SVM offers a unifying framework for categorizing multiple types of data, allowing for 
the creation of various machine learning architectures. The linear SVM design is used when the data can 
be divided into linear categories. For nonlinear data, a different kernel function is used. Kernel functions 
transform low-dimensional data into a higher-dimensional space that allows separation for linear data 
[28]. To categorize novel data points, SVM assess their position relative to the hyperplane. Utilizing the 
acquired parameters from the training phase, SVM determines the side of the hyperplane the data point 
falls on, thereby assigning it to one of the classes (refer to Figure 5) [29]. 
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Figure 5. SVM approaches; (a) one-versus-all method, (b) one-versus-one method. 

In medical image analysis, the SVM classifier widely used in research on skin cancer datasets has 
shown promising results. Protein function prediction, gene expression data classification, and cancer 
detection are some applications of massive SVMs [30]. 

In this paper, we used SVM to classify malignant tumors and benign tumors by passing the segmented 
and feature-extracted images into CNN where SVM establishes the hyperplane and categorizes 
individuals with similar features into separate classes. The performance of the SVM classifier was very 
accurate even for a small dataset [17], and its performance was compared to other classification 
algorithms such as CNN. 

4.4. System Architecture 
The proposed CNN-based model [31] consists of three components, namely feature learning, image 

classification using SVM, and hybridization of CNN and SVM as depicted in Figure 6 We begin by 
feeding a 224 × 224 × 3 image to the model, followed by t wo identical blocks, each comprising three 
layers. The first convolution layer uses 64 filters of kernel size 3 × 3 with the RELU activation function, 
followed by a maxpooling layer of size 2 × 2 to reduce feature maps, and a dropout layer with a value of 
0.25. We repeat the same process in the second block, using the output of the first block as input. Next, 
the model flattens the results of the two blocks and moves to the fully connected layer, which has 128 
neurons and uses RELU as the activation function. We classify the images using the SVM classifier with 
Linear activation function. The training process involves using the Adam optimizer and Hinge as the loss 
parameter value. 

5. Results and Discussion 
This section discusses the results of the proposed method for classifying skin cancer, as well as 

performance measures of CNN, CNN with data augmentation, and CNN-SVM combination. The 
obtained results are then compared with state of the art results. 

5.1 Experimental Results 
The initial step in our process involved loading the images and converting them into numpy arrays 

by considering their RGB value. It should be noted that the images have already been resized to 224 × 
224. Subsequently, labels were created for each image, and finally, the images were added to a 
comprehensive training set and mixed together. The system was then able to analyze the images from the 
database and categorize them into two different classes, namely benign and malignant. 

5.1.1. CNN 
To enhance the performance of our model, we experimented by training the model with a fixed 

number of epochs and noting down the achieved accuracy. It was observed that as the number of epochs 
increased, the accuracy of the model improved. For example, at 20 epochs, the accuracy was found to be 
54%, while at 50 epochs, it increased to 91%. Finally, we trained our model with 100 epochs, which 
resulted in high accuracy of 97.27%, and hence, we stopped at this stage.  
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Figure 6. Global architecture of the model. 

The proposed model was trained with 2,637 images, and achieved a validation accuracy of nearly 
75%. Validation accuracy measures the accuracy of predictions on a randomly selected validation set 
after each epoch. Notably, the validation accuracy does not decrease and remains constant at around 75%, 
even as overall accuracy continues to improve (See Figure 7). The loss values follow a similar pattern, 
with the overall loss decreasing almost every epoch and approaching 0, while the validation loss remains 
stagnant like the validation accuracy. Loss values indicate how close the neural network is to its optimal 
performance. 

  

Figure 7. Accuracy and loss Curves of CNN. 

The size of the data set is a critical factor in determining the performance of a deep learning model. 
However, the model's accuracy can also be improved by expanding the existing data through data 
augmentation techniques. This approach also helps the model become more adaptable to diverse image 
types. Data augmentation involves adding variations to the existing data, such as applying random zoom-
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ins or zoom-outs, rotating the image at random angles, blurring the image, and so on. Our model achieved 
98.55% accuracy with 100 epochs while it had an accuracy of 97.27% without data augmentation. 
Therefore, we can conclude that data augmentation is an effective technique for enhancing the learning 
of a CNN model.  

5.1.2. CNN-SVM Combination 
The accuracy achieved after training the model without using data augmentation for 100 epochs with 

2,637 training images and 660 testing images is about 94.72%. It is worth noting that the model's 
performance without using data augmentation is satisfactory. However, in the next section, we aim to 
enhance it further. During the training of our CNN+SVM model, the accuracy and loss values for the 
validation data may vary depending on the situation. Typically, as the number of epochs increases, we 
expect the loss to decrease and the accuracy to increase, which is what happened in our case. 

Throughout this study, several results were obtained for the detection of malignant and benign images. 
This sheds light on the different methods used for skin cancer detection. The Table 3 presents the 
outcomes obtained using the different techniques: CNN, CNN+data augmentation, CNN+SVM, and 
CNN+SVM+data augmentation for both malignant and benign images. 

Table 3. Classification accuracy of the proposed systems. 
Data Augmentation Technique Training Evaluation 

Without 
CNN 97.27% 75% 
CNN-SVM 98% 94.72% 

With 
CNN 98.55% 97.27% 
CNN-SVM 99% 98.71% 

To gauge the performance of the proposed binary classification model based on CNN-SVM 
combination on the testing data, we constructed a confusion matrix, as illustrated in Table 4. The results 
unequivocally showcase the remarkable discriminatory efficacy of our approach in skin cancer detection. 
In assessing these outcomes, we employed key metrics including Overall Accuracy (OA), Precision (P), 
Recall (R), and F1 score (F1), computed using Equations (1)–(4). In these equations, TP (True Positive), 
TN (True Negative), FN (False Negative), and FP (False Positive) represent the respective outcomes of 
the model's predictions. TP signifies correctly predicted positive outcomes, TN denotes correctly 
predicted negative outcomes, FP represents incorrectly predicted positive outcomes, and FN indicates 
incorrectly predicted negative outcomes. 

Table 4. Confusion matrix of CNN-SVM combination model (Class1: Malignant; Class2: Benign). 
 

  Truth Data  

  Class 1 Class 2 Classification 
overall 

User’s accuracy 
(Precision) 

Classifier  
results 

Class 1 1,818 11 1,829 99.399% 

Class 2 42 2,245 2,287 98.164% 

Truth overall 1,860 2,256 4,116 
 

 Producer’s  
accuracy (Recall) 

97.742% 99.512%  

      
Overall  

accuracy (OA) 
98.712%     

 
 

OA = (TP + TN)/(P + N) (1) 

P = TP/(TP + FP) (2) 

R = TP/(TP + FP) (3) 
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F1 = 2*TP/(2*TP + FP + FN) (4) 

In addition to the afore mentioned metrics, Table 4 provides the values of the Negative Predictive 
Value (NPV) and the False Positive Rate (FPR), which stand at 98.16% and 99.51%, respectively. 
Furthermore, the table presents supplementary performance measures derived from the confusion matrix 
of the CNN-SVM classifier. These include an accuracy (OA) of 98.71%, precision (P) of 99.4%, recall 
(R) of 97.74%, and an F1-score of 98.56%. 

5.2. Comparison Study 
In this section, we have presented a comparison between our work and the recent studies that used 

the same database for skin cancer (See Table 5). We compared the highest mean results of our method 
with the mean results reported in other studies.  

ML models, particularly deep learning models, can automatically learn complex patterns and nuances 
from data, allowing them to adapt to evolving forms of skin cancer. The benefit of the used machine 
learning models is to provide better generalization power for skin cancer classification problems. The 
use of deep learning networks has proven, as mentioned in [32,33], high performance. Consequently, 
through the power of ML and DL models, a detailed investigation of a hybrid architecture using CNN 
and SVM models was reported in this study. 

From the reported results, it can be concluded that the proposed method outperforms comparative 
techniques. It uses a faster CNN with the SVM algorithm, which classifies a more efficient set of image 
features and can better deal with the model fitting problem. Therefore, we can say that our presented 
method is more effective and efficient for the detection and classification of skin lesions. However, it's 
important to note that bias in AI models is a critical concern that needs to be addressed in the development 
process. If the training data used to train a machine learning model is biased, the model is likely to inherit 
and perpetuate those biases. For example, if the training data contains imbalances in the representation 
of different groups, the model may not generalize well to underrepresented groups [32]. In this study, the 
used dataset is characterized by a diversity of data which is also guaranteed by data augmentation; 
therefore a major influence on the ability of the proposed methods can overcome biases. 

Table 5. Comparative study. 
Authors Technique Accuracy 

[16] SVM 85.7% 
[20] ANN 77% 
[24] KNN 65.39% 

SVM 85.72% 
Random Forest 74.32% 

[22] CNN 95% 
[34] CNN+SVM 91.7% 

Proposed 
system 

CNN+SVM  
with data augmentation  

98.71% 

6. Conclusions 
This paper describes a skin cancer detection system that combines a convolutional neural network 

and a support vector machine, using ISIC images for testing. Skin cancer is a serious and increasingly 
prevalent health problem, and early detection is crucial for a positive prognosis. Dermoscopy is a 
common imaging method for diagnosing skin lesions, but the interpretation of these images can be 
difficult and subjective. The proposed model aims to assist in the interpretation of these images, 
providing accurate information on the content of the image and the pathological aspects of the structures 
presented. The model can aid in improving different stages of medical image analysis and can provide 
better recognition performance. While the model will never replace the eye of the clinician, it can provide 
faster and more detailed interpretation tools, making it reliable for diagnosing and detecting diseases. 
The model uses a combination of machine learning and deep learning, with the CNN model being 
effective for detection problems and the SVM model being more effective for classifying cancer images. 
This study represents a significant advancement in the field of skin cancer detection by employing a 
combination of Convolution Neural Networks and Support Vector Machines for the precise 
categorization of skin lesions into benign and malignant forms. The proposed Model outperformed all 
existing models dedicated to skin cancer detection, thus showcasing its remarkable potential in improving 
diagnostic accuracy and potentially saving lives. This achievement underscores the importance of 
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harnessing machine learning techniques in the medical domain for more effective disease diagnosis and 
management. 
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