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Abstract: Society has been impacted by the influence of artificial intelligence (AI) across various aspects of daily 

life over the last few years.  AI can positively impact healthcare by making it cheaper, quicker, more effective, and 

more accessible. AI has impacted the detection and treatment of cardiovascular diseases (CVD). The analysis of 

heart sound recordings using AI has been studied during the last decade in the study of noninvasive diagnosis of 

CVD. This study aims to construct a machine learning model that requires the least computational resources and 

computation time for the classification of heart sounds using a novel set of time-domain, frequency-domain, and 

statistical-domain features extracted from heart sound recordings. A public dataset of heart sound recordings 

comprising five classes including one normal category and four different categories of valvular diseases was used in 

this study. Two combinations of data were used in the experiments. The first combination dataset consisted of normal 

and abnormal heart sounds. The second combination consisted of heart sound recordings belonging to one normal 

category and four different valvular diseases of heart sounds. The model’s performance can be deemed excellent, 

with the first combination giving an accuracy of 99.89% and the second combination giving an overall accuracy of 

99.26%. 
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1. Introduction 
Artificial Intelligence (AI) has impacted society in several ways in various domains. Several domains 

of healthcare have been affected by AI, including radiology, cancer detection, and diabetic retinopathy. 
AI can reduce healthcare costs, make it more accessible, and improve the speed of response by using it 
for screening, detection, diagnosis and prognosis [1]. A few examples are provided here to demonstrate 
the application of AI in diverse areas of healthcare. Heli Shah et al. [2] used machine learning (ML) to 
generate a treatment plan for oral cancer. Chandrika R et al. [3] have proposed a hybrid segmentation for 
the detection and classification of lung cancer. Maalej et al. [4] used transfer learning and data 
augmentation techniques [4] to classify breast cancers. A hybrid deep learning (DL) network was 
proposed for skin lesion segmentation by Rout et al. [5]. 

According to a report by the World Heart Federation (WHF) released in 2023, 20.5 million deaths 
due to cardiovascular diseases (CVDs) occurred in 2021. Timely detection and treatment can prevent  
80% of stroke and heart attacks [6]. One of the major factors is congenital heart disease (CHD), which 
affects one out of every 100 children born [7]. Only approximately 10% of children with CHD have 
access to proper healthcare. Developing countries have significantly higher mortality rates due to CHD 
than developed countries [8]. Communities with lower socioeconomic status are at a higher risk of  
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CVDs [9].  
Advancements in treatment techniques have occurred over the last few decades. However, the 

sections of society that need it do not have access to quality treatment as the development is concentrated 
in richer countries. This healthcare gap must be addressed by integrating AI into healthcare to make it 
more accessible and cheaper. One way to enhance access to cardiovascular care for weaker sections of 
society is to integrate AI into cardiovascular care to make it more accessible, quicker, cheaper, and more 
effective. AI is being applied in CVD detection and treatment to make the treatment more effective and 
to help in early detection. 

Early detection: Early detection of cardiovascular disease can be beneficial in both treating and 
preventing it for a variety of reasons. First, it enables timely intervention through lifestyle adjustments, 
medications, or minimally invasive procedures, possibly halting the progression of the disease and its 
complications. The long-term health and quality of life of patients can be significantly improved using 
this approach [10]. Second, early detection often involves identifying and managing underlying risk 
factors such as high cholesterol, high blood pressure, and diabetes. By addressing these factors through 
lifestyle modifications or pharmacotherapy, individuals can reduce the risk of developing further 
complications. Third, it serves to prevent serious complications, such as heart attacks, strokes, and heart 
failure, which can be dangerous to life and place a burden on healthcare systems. Proactive management 
can reduce the healthcare costs associated with the treatment of advanced stages of the disease. Finally, 
early diagnosis promotes increased awareness among individuals, motivating them to adopt healthier 
lifestyle habits, undergo regular screenings, and follow treatment plans, contributing to improved health 
outcomes and potentially reducing the burden on healthcare systems [11]. 

Researchers began using digital signal processing techniques more than three decades ago to 
automate the detection of heart diseases by analysing heart sounds. The researchers then began using 
machine learning (ML) techniques to analyse phonocardiograms. However, a very high accuracy could 
not be achieved. DL techniques have been applied during the last decade to increase the accuracy and 
make the system more effective. However, building DL models requires more data samples and a large 
amount of computational power. However, they have not reached the desired levels of accuracy and 
effectiveness, where they can be integrated into an electronic stethoscope. There is a need to find methods 
which require minimal computing power, reach nearly 100% accuracy and sensitivity, and are 
sufficiently small to be embedded in an electronic stethoscope or an equivalent portable device. 

This study aims to fill this research gap by finding a method that requires the least computing 
resources and provides high values for all important performance metrics. This study aimed to develop 
a classification model that uses a novel combination of audio features as input, is less computationally 
intensive, and uses low-end hardware. ML techniques were used in this study to classify heart sounds as 
diseased or normal using features extracted from heart sounds. Furthermore, abnormal heart sound 
recordings were classified into one of the four valvular diseases. This method is a low-cost, simple, and 
noninvasive technique for detecting CVDs. 

Several studies have been conducted in this area, using audio features [12] and spectrograms 
generated from audio data samples [13]. Some researchers have used time-domain and spectral-domain 
features of audio datasets. This study examined the efficiency of various ML algorithms for classifying 
heart sounds based on audio features.  Broadly, these features fall into four categories: time-domain, 
frequency-domain, time-frequency domain, and statistical domain features. Researchers have used ML 
and deep learning (DL) algorithms, some of which are computationally intensive and require high-end 
hardware. 

The list of features included mel-frequency cepstral coefficients (MFCCs), energy (RMS), spectral 
flux, spectral rolloff, spectral bandwidth, spectral contrast, energy, mel-spectrogram, FFT values, degree 
of periodicity, spectral entropy, short-time energy, spectral centroid, flatness, power mean value, 
normalised signal, temporal crest factor, discrete wavelet transform, zero-crossing rate, skewness, 
kurtosis, peak frequency, mean frequency, median frequency, LPC_AVG, and high-frequency distortion. 

ML algorithms are used to ensure accurate classification while processing large amounts of data. As 
a result, the accuracy and efficiency are enhanced in classifying heart sounds and detecting cardiac events. 
Five classification methods have been applied: multilayer perceptron (MLP), support vector machines 
(SVM), k-nearest neighbours (kNN), naive Bayes (NB), and random forests (RF). 

2. Background 

2.1. Heart Murmurs 
The heart generates extra sounds called murmurs, which are generated by the turbulent blood flow 

within the heart. Murmurs can be caused by various factors, including valve defects and congenital heart 
defects (CHD). Murmurs can be classified according to their timing, duration, and intensity to provide 
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clues regarding the basic cause.  
Listening to heart sounds to understand the details of heart sound and murmurs and interpreting heart 

sounds for detecting heart diseases is called auscultation. This is the traditional technique used by the 
physicians. However, it is highly subjective, requires training, and has the possibility of a wrong 
diagnosis.  

2.2. Automated Analysis of Heart Sounds 
Automated analysis of heart sounds using ML and DL methods has been studied over the last several 

years. Cardiovascular disease (CVD) can be detected early using this method [14]. Different heart sound 
patterns can be identified and categorised using it, which can offer an important understanding of a 
patient's cardiovascular health [15]. The accurate heart sound classification can also reduce the burden 
on healthcare systems by enabling more efficient allocation of resources and reducing healthcare costs 
[14].  

Audio recordings of heart sounds, called phonocardiograms, have been analysed using ML techniques 
to detect heart disease. One approach is the segmentation of heart sounds after identifying the 
fundamental heart sounds and subsequently extracting features from the audio which are then channelled 
as input to the ML algorithms. Some researchers have extracted audio features from unsegmented audio 
data to analyse heart sounds. Several researchers have provided raw audio data as input directly to DL 
algorithms for classification.  

2.3. Audio Features 
For this training, 27 audio features were selected for this training. These audio features are classified 

into four broad categories: frequency, time, time-frequency domain, and statistical domain features. 
These features help in studying the condition of the heart, as any abnormality in the heart can affect some 
of the features. A weakened heart may lead to a lower amplitude (energy). Irregular heart valve 
functioning may alter the heart rate and hence affect the frequency spectrum. The murmurs and additional 
sounds may be of different frequencies than a normal heart sound. The time-domain features can be 
affected by valvular diseases as the duration of various phases within the heart cycle is affected. The 
selected features are discussed below. 

Discrete wavelet transforms: Discrete wavelet transforms can be used to extract different frequency 
bands. This allows the extraction of both time and frequency information. The DWT can capture transient 
changes and variations in sounds.  

DWT 𝑥,𝑦 𝑍 𝑡
1

|2 |
 𝜑

𝑡 2 𝑦
2

𝑑𝑡 (1) 

MFCCs: MFCCs, which are acronyms for Mel Frequency Cepstral Coefficients, are utilised to record 
the spectral envelope of an audio signal, thereby depicting the dispersion of sound energy at various 
frequencies. MFCCs mimic the human auditory system's perception of pitch and loudness [16]. The Mel-
scale frequency was derived using (2): 

Mel (f) = 2595 log (1 + f/100) (2) 

Extracting MFCCs from heart sound recordings helps to obtain the coefficients of the dominant 
frequencies and their relative strengths in the sample. This information can be analysed to characterise 
normal heart sounds. S1 and S2, the main heart sounds, have characteristic MFCC patterns based on the 
valve-closure frequencies. Abnormal sounds caused by turbulent blood flow can manifest as distinct 
changes in the MFCC spectrum, highlighting additional frequency components or altering the relative 
strengths of existing ones. Specific MFCC features can help to distinguish murmurs arising from different 
valve problems (e.g., mitral regurgitation vs. aortic stenosis).  

The MFCCs are robust to noise. They are relatively resistant to background noise and environmental 
factors, making them reliable for analysing real-world recordings. MFCCs reduce high-dimensional 
frequency information into a set of lower-dimensional coefficients, thereby reducing the computational 
complexity. 

Calculating and extracting MFCCs from an audio signal involves the following steps [17]. 
(Optional) Pre-emphasize high frequencies. 
Divide the signal into short, overlapping frames. 
Apply the windowing function to each frame. 
Each frame is converted using a Fast Fourier Transform (FFT) to the frequency domain. 
Apply mel-scale filtering and logarithmic compression to mimic human hearing. 
Use the Discrete Cosine Transform (DCT) to extract a low-dimensional feature vector. 
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The formula for the MFCCs can be summarised as follows: 

MFCC = DCT (log ( MelFilter (FFT(Window ( Pre-emphasis ( signal)))))) (3) 

The resulting MFCC features capture the spectral characteristics of audio in a manner relevant to 
human perception, making them valuable in applications such as speech recognition and speaker 
identification. 

Spectral rolloff: Spectral rolloff is the frequency below which a certain percentage of the total signal 
energy is present. Data on the frequency content of heart sound recording can be indicative of certain 
cardiovascular conditions [18]. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑅𝑜𝑙𝑙𝑜𝑓𝑓 0.9 ∗ ∑ |𝑥 𝑛 |  (4) 

where x(n) is the frequency-component amplitude in bin n. 
Spectral entropy: The spectral entropy of a signal measures the randomness of its frequency 

distribution. Normal heart sounds can be distinguished from abnormal sounds using this technique [18] 
because noise has a higher entropy value. Mathematically, entropy is given by (5). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ∑ 𝑥 𝑛 ∗ 𝑙𝑜𝑔2𝑥 𝑛    (5) 

Temporal crest factor: The peak-to-peak amplitude of an audio sample divided by the root mean 
square of the signal over a given time interval is called the temporal crest factor, and is given by (6). It 
helps in the differentiation of various types of heart sounds and identification of distinct patterns 
associated with different cardiovascular conditions [18]. 

𝐶𝐹  
𝑃𝑒𝑎𝑘 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
𝑅𝑀𝑆 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

 (6) 

Spectral flatness: A signal's spectral flatness is determined by how evenly it is distributed across 
different frequencies and is the ratio of the geometric mean to the arithmetic mean of the power spectrum. 
Higher values indicate more noise, whereas lower values indicate tonal or harmonic characteristics. 

𝑆𝐹  
𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚

 (7) 

Short-time energy: Short-time energy measures the energy of a signal within a short period and is 
given by (8). This provides information regarding the intensity or amplitude variations in the heart sound 
signal, which can be indicative of certain cardiac abnormalities [15,18]. 

𝑆𝑇𝐸 ∑ 𝑥 𝑛 ∗ 𝑤 𝑚 𝑛    (8) 

Degree of periodicity: The frequency with which a signal repeats is called periodicity. Normal heart 
sounds can exhibit some degree of periodicity. Pathological heart sounds could be less periodic owing to 
irregularities in valve function. 

Spectral energy: The dispersal of the signal energy across the frequencies of the audio sample is given 
by the spectral energy. This feature can help to identify abnormal patterns or characteristics associated 
with different heart conditions. 

𝐸 𝑓  |𝑋 𝑓 |  (9) 

where E(f) is the spectral energy at frequency f, X(f) is the Fourier transform of the audio signal x(t) 
evaluated at frequency f, and ∣X(f)∣ represents the magnitude of X(f), which captures the amplitude of 
the frequency component of audio data at frequency f. This formula calculates the energy content of a 
signal at a specific frequency by squaring the magnitude of the Fourier transform coefficient at that 
frequency, which provides a measure of the energy distribution of the signal across different frequency 
components. 
Spectral contrast: Spectral contrast is a feature used in audio signal processing to quantify the difference 
in energy between the peaks and valleys in the spectrum of an audio signal.  Spectral contrast can help 
to identify abnormalities or changes in the frequency content associated with specific cardiovascular 
conditions. 

𝐶  
max 𝜇 𝐺𝑀

𝐺𝑀
 (10) 

where 𝜇  is the average energy in frequency band b, GM is the geometric mean of the average energies 
over all the bands, and Cb is the spectral contrast for each band. 
Spectral bandwidth: The frequency range in which most of the signal energy resides is called spectrum 
bandwidth. This feature provides insights into the distribution and intensity of frequencies present in 
heart sounds [15]. 

𝐵𝑊 ∑ 𝑃 𝑓   .  𝑓 𝑓    (11) 



 

135 
 

 

Fast Fourier Transform values: FFT values are commonly used in heart sound analysis to determine the 
signal's frequency content. Using FFT, the frequency components linked to CVDs can be identified from 
the time domain of the heart sound signal [18]. The FFT coefficients are determined by applying discrete 
Fourier transforms to each signal, as given in (12), to obtain the spectrum of the signals. 

𝐹 𝑤 ∑ 𝑓 𝑛 . 𝑒 𝑗2𝜋𝑤𝑛/𝑁    (12) 

Zero crossing rate: This rate measures the rate at which a signal crosses the horizontal axis (zero 
amplitude). This provides information about the periodicity of heart sounds [18]. 

𝑍𝐶𝑅 ∑ | 𝑠𝑖𝑔𝑛 𝑥 𝑛  𝑠𝑖𝑔𝑛 𝑥 𝑛 1 |   (13) 

Spectral flux: The spectral flux measures the spectral energy changes in the spectral energy 
distribution over time. By analysing the spread of spectral flux values within different classes (normal 
vs. abnormal or specific valve diseases), the model can learn to associate changes in the spectrum with 
specific heart conditions [18]. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐹𝑙𝑢𝑥 ∑ 𝑓 𝑥 𝑛 𝑓 𝑥 𝑛 1    (14) 

Spectral centroid: The spectral centroid identifies the main frequency existing in the heart sound by 
mapping the centre of mass of the power spectrum. Different heart sound patterns can be distinguished 
in this way [14,18]. It is calculated using the power spectra of the preceding and current frames, as given 
in (15). 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑  
∑ .

∑  
  (15) 

Skewness: The skewness of a probability distribution is a statistical measure of asymmetry. It provides 
information regarding the shape of the distribution of a feature [15]. Normal heart sounds have skewness 
values closer to 0. Certain types of abnormal sounds, such as murmurs, can exhibit more pronounced 
skewness [17].  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠
∑  

∑
  (16) 

Kurtosis: Kurtosis is a statistical measure that quantifies the peakedness or flatness of a probability 
distribution. It assesses the extent to which the distribution deviates from a bell-shaped curve, by focusing 
on the presence of extreme values (outliers). Positive kurtosis can be observed in murmurs or extra heart 
sounds [17].  

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠  
∑   ̅

∑   ̅ 
  3  (17) 

Median frequency: Median frequency refers to the frequency that divides the power distribution in a 
signal into two equal parts. Various valvular diseases can result in distinct median frequency patterns.  

Mean frequency: Recorded heart sounds are represented by their average or mean frequency. Heart 
sounds with murmurs often exhibit dissimilar mean frequencies compared with normal sounds. 

𝑀𝑒𝑎𝑛 𝜇
∑ ∑ 𝐽 𝑎, 𝑏

𝐴 𝐵
 (18) 

Peak frequency: This is the frequency at which the signal reaches its maximum amplitude.  
High-frequency distortion: The amount of noise or distortion present at high frequencies in the heart 

sound is called high-frequency distortion. 
Linear Predictive Coding average: The Linear Predictive Coding average (LPC_AVG) calculates the 

average energy distribution across all frequencies in the heart sound signal. Normal versus abnormal 
sounds can be distinguished from LPC_AVG patterns and can assist in identifying specific valve diseases 
based on their characteristic frequency content. The formula for the LPC is given in Equation (19), the 
time index is denoted by n, the LPC coefficient index is denoted by k, and the residual prediction error 
is denoted by e(n). Signal redundancy is removed by predicting the next value as a linear combination of 
previous values, as shown in (19). 

𝑠 𝑛  ∑ 𝑎 . 𝑠 𝑛 𝑘 𝑒 𝑛   (19) 

Energy (RMS): Audio signals are measured by their energy (RMS) or Root Mean Square (RMS) 
energy and the average power (or intensity) over time, and are indicative of the amount of sound energy 
present in the signal. This is the average magnitude of a changing signal computed by taking the square 
root of the average of the squared values of the signal over a period. This method quantifies the overall 
“loudness” of the signal by considering its variations in amplitude. The term “energy” represents the 
amount of sound energy present in the signal.  
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𝐸  ∑ 𝑥 𝑛   (20) 

where N is the total count of samples in the audio sample and x[n] is a sequence of samples of discrete-
time signals. 

Mel-spectrograms: Mel-spectrograms use the mel-scale, which reflects the non-linear response of the 
human auditory system to frequency, in contrast to the traditional spectrograms (A visual representation 
of the distribution of frequencies of an audio signal over a period through the application of the short-
time Fourier transform (STFT) method on an audio signal ) that employ a linear frequency scale [19]. By 
compressing the frequency axis at lower frequencies and expanding it at higher frequencies, mel-
spectrograms mimic human perception of loudness, while the logarithmic intensity scale highlights 
changes in perceived loudness rather than absolute amplitude, effectively capturing temporal sound 
variations and exhibiting resilience to noise, with the mel-scale frequency being defined by Equation (2). 

Normalised signals: This is the signal with the mean adjusted to zero and standard deviation adjusted 
to one. This  is done to reduce the differences in the frequency ranges of the different types of sounds 
[20]. 

𝐗 
𝐗 min 𝐗

max 𝐗 min 𝐗
 (21) 

Heart sounds with murmurs could have higher RMS values than normal sounds, owing to the 
increased energy in specific frequency bands. Cases such as weak heart muscle contraction or valvular 
insufficiency result in lower energy (RMS) values.  

Among the several audio features that can be extracted from heart sound recordings for being given 
as input for ML models, the features that have added impact include spectral bandwidth, spectral centroid, 
zero crossing rate, FFT values, and spectral flux. These features capture a variety of aspects of an audio 
signal, such as the frequency distribution, rhythmic patterns, spectral energy changes, and dominant 
frequencies. A concise description of the features is given in Table 1. 

Table 1. A list of audio features extracted and their description. 

Feature Description 

Frequency domain Features 

MFCCs 
The spectral envelope of the signal is represented on a mel-scale, like human 
perception. 

Spectral Flux Measure how quickly the spectrum changes over time. 

Spectral Rolloff Frequency above which 90% of the spectral energy lies. 

Spectral 
Bandwidth 

Difference between the frequencies at 75% and 25% of the spectral energy. 

Spectral Contrast Measure of spectral shape differences between adjacent frequency bands. 

Spectral Energy Distribution of energy across the frequency spectrum. 

FFT Values Magnitudes and phases of the signal's frequency components. 

Spectral Entropy A measure quantifying the spectral distribution’s randomness 

Spectral Centroid Spectral energy distribution’s centre of mass 

Spectral Flatness The ratio of total spectral energy to the energy in the highest frequency band. 

Peak Frequency The frequency with the maximum amplitude 

Mean Frequency The signal’s average frequency 

Median Frequency Frequency that divides the signal's energy in half. 

LPC_AVG Average of the LPC coefficients, representing the formant frequencies. 

High-Frequency 
Distortion 

Measure the amount of high-frequency content lost due to processing or 
transmission. 

Time domain features 
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Energy Signal’s overall loudness in a short time window. 

ZCR Number of times the signal crosses zero amplitude in a window. 

Degree of 
Periodicity 

Measure how periodic the signal is. 

Short Time Energy Energy within a short time window; is used for dynamic analysis. 

Power Mean Value Measure the overall level of the signal, capturing both high and low amplitudes. 

Temporal Crest 
Factor 

The ratio of the peak amplitude to the RMS amplitude. 

Normalized Signal Signal with mean and standard deviation adjusted to zero and one, respectively. 

Time-Frequency doman features 

DWT Multi-scale depiction of the signal using wavelets. 

Mel Spectrogram Visual illustration of the mel-filtered spectrogram over time. 

Statistical domain features 

Skewness Measure of the asymmetry of the signal's amplitude distribution. 

Kurtosis Measure of the "tailedness" or peakedness of the signal's amplitude distribution. 

3. Related Work 
Several researchers have attempted to develop automated algorithms for heart sound classification 

using ML techniques, and significant progress has been made. Sathyanarayanan et al. [21] have surveyed 
the work done during the last few years in heart sound classification using ML techniques. Some studies 
have focused on extracting relevant features from heart sound recordings and feeding them into ML 
algorithms to develop accurate classification models [22]. The models produced satisfactory results. to 
accurately categorise heart sounds and detect various cardiovascular conditions [14]. 

A significant contribution was made by Clifford et al. (2016), who organised the 
PhysioNet/Computing in Cardiology Challenge, focusing on the classification of abnormal and normal 
heart sound recordings. This challenge highlights the diversity of methodologies employed in the field, 
and offers a comparison of different algorithmic approaches. The results from this challenge indicated 
that ML, especially DL models, was reasonably effective in handling the complexity and variability 
inherent in heart sound data [23].  

Mahesh Kumar et al. [24] experimented with a swift spectral analysis-driven statistical feature 
extraction technique for detecting the phases of Aortic Stenosis (AS) using heart sounds by identifying 
the statistical difference between AS heart sounds and normal heart sounds. Spectral statistical features 
can identify the normal/unhealthy condition of the heart, serving as a rapid predictor of AS. 

In a study conducted by Li et al. [15], the authors utilised a set of audio features of heart sounds for 
classification purposes. Researchers have determined that MFCCs are among the most important features. 
The authors also claimed that spectral entropy, short-time energy, spectral centroid, and spectral flatness 
are important for the classification of heart sounds. An automated heart sounds assessment was conducted 
by Tang et al. [14]. They selected ten features without segmentation, including kurtosis, energy ratio, and 
sound periodicity, and achieved 90.4% accuracy for binary classification and 85.7% accuracy for triple 
classification. 

Soto-Murillo et al. [25] calculated fifty-two audio features from three categories of analysed heart 
sounds, including Linear Predictive Coding (LPC) coefficients, statistical features, and MFCCs, and used 
them for further analysis and classification. They evaluated six classifiers: k-nearest neighbours, SVM, 
naive Bayes, logistic regression, decision trees, and Artificial Neural Networks (ANNs) and reported the 
highest accuracy of 70.73%. 

Khan et al. [18] used frequency and time domain features for training the different models in 
automated heart sound classification without performing segmentation on the input signals. The extracted 
features include the spectral roll-off frequency, root mean square value, peak value, crest factor, LPC, 
MFCCs, entropy-based features, wavelet transform-based features, and features extracted from the power 
spectral density. Automated heart sound classification was performed using various algorithms including 
SVM, ANN, and Cartesian Genetic Programming Evolved ANNs (CGPANN).  They reported an 
accuracy of 73.64% using SVM. The SVM outperformed the other algorithms. 
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Around ten features of PCGs were extracted from PCGs by Yadav et al. [12] and channelled into four 
different ML algorithms to build a classification model. Furthermore, four prominent features were 
selected and given as inputs for building ML models which resulted in higher accuracy. Upretee et al. 
[26] implemented a classification algorithm using only the spectral centroid feature and reported a 96% 
accuracy for multiclass classification using the Yaseen dataset.  

Three heart sound classes were considered by Zeinali et al. [27], that is, normal, S3 and S4 sounds 
for multiclass classification. Statistical, signal, wavelet, and information theory features extracted from 
the audio dataset were processed using a feature selection algorithm to select the relevant features. ML 
classifiers, including gradient boosting, support vectors, and random forests were used for classification. 
They reported accuracies of 87.5% for multiclass classification and 98% for binary classification. 

A study involving the extraction of texture recognition features HOG and LBP from spectrograms 
generated from an audio dataset which was then channelled to various ML algorithms as input, was 
conducted by Sathyanarayanan et al., with excellent results [13]. 

Several ML algorithms have been tested for classifying heart sounds [14]. These algorithms utilise 
features derived from the dataset as inputs to develop a classification model [22].  

Gap in research: This study aims to build an ML model that uses a novel set of acoustic features 
derived from each training sample as input and classifies heart sounds. The ML model should not be 
computationally intensive in terms of both time and computing power. The model could then be 
embedded in an electronic stethoscope to detect heart disease. Therefore, screening can be performed by 
using this device. 

4. Dataset Details 
The heart sounds utilised for this research were related to valvular diseases and is obtained from the 

dataset curated by Yaseen et al. [16]. It comprises 1000 audio samples with an equal distribution of 200 
samples across each of the five classes. The audio samples were filtered and converted into a 
monochannel format. These samples are characterised by a single-channel audio format, 128 kbps bit 
rate, 8 KHz sampling rate, and a sample size of 16 bits. The duration of the recordings ranged from 1 to 
3 seconds, with the majority being 2 seconds in duration. To ensure uniformity in the training data, audio 
samples shorter than 2 s were excluded and longer samples were trimmed to 2 s. Because of this step, 
potential errors owing to uneven training data were avoided. The sample waveform for each category is 
shown in Figure 1. 

According to Bao et al. [28], heart sound recordings lasting 2 s were deemed optimal for several 
reasons. Longer samples do not necessarily result in higher accuracy and can lead to unnecessary resource 
consumption. Moreover, audio data with a duration shorter than 2 s might not provide adequate 
information for the identification of certain patterns and the reduction of random errors. Consequently, 
this study employed 957 audio samples for analysis, as listed in Table 2. 

Table 2. Details of the Yaseen dataset. 

Class Type Number of samples 

Normal (N) Normal 200 

Aortic stenosis (AS) 

Abnormal 

200 

Mitral regurtitation (MR) 184 

Mitral stenosis (MS) 186 

Mitral valve prolapse (MVP) 187 

Total  957 
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Figure 1. Waveforms of existing CVD classes in the PCG dataset [29]. 

5. Methodology 
The Yaseen dataset was used in this study. The dataset consisting of audio recordings of cardiac 

sounds was preprocessed to ensure standardisation. Two variations of the dataset were used in the 
experiments. The first combination comprised both the abnormal and normal categories. The second 
combination of datasets encompassed a single normal category of cardiac sound recordings and four 
distinct categories of abnormal cardiac sound recordings, each of which included audio samples of a 
valvular ailment. In total, 957 spectrograms were obtained from this dataset. 

This work was performed in five steps, as depicted in Figure 2, for both combinations of datasets. 

(1) Acquire the heart sounds dataset 
(2) Pre-process the audio dataset 
(3) Extract the relevant features from the heart sounds 
(4) Channel the features to an ML model and perform model training  
(5) Performance evaluation was based on various ML metrics, including precision, recall, accuracy, 

specificity, and F1-score. 

 
Figure 2. Steps in the methodology to classify the heart sound signals.  

The features include MFCCs, energy, spectral rolloff, spectral bandwidth, spectral flux, spectral 
contrast, spectral energy, mel-spectrogram, FFT values, zero-crossing rate, degree of periodicity, spectral 
entropy, spectral centroid, short-time energy, spectral flatness, power mean value, normalised signal, 
temporal crest factor, DWT, peak frequency, median frequency, skewness, kurtosis, mean frequency, 
LPC_AVG, and high-frequency distortion. 

Collection of heart 
sounds 

Preprocessing of 
heart sound

Extraction of audio 
features from 

samples

Classification 
using kNN, SVM, 
NB, RF and MLP

Performance 
evaluation
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6. Results and Discussion 
6.1. Performance Metrics 

A brief description is provided for the metrics used to evaluate the model's performance in Equations 
(22)–(26). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  
𝑇𝑃 𝑇𝑁

𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁
 (20) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
𝑇𝑃

𝑇𝑃 𝐹𝑃
 (22) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑅𝑒𝑐𝑎𝑙𝑙 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒  
𝑇𝑃

𝑇𝑃 𝐹𝑁
 (23) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  
𝑇𝑁

𝑇𝑁 𝐹𝑃
 (24) 

𝐹1 𝑠𝑐𝑜𝑟𝑒  
2    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙
 (25) 

where TP, FP, TN, and FN represent the number of true positives, false positives, true negatives, and 
false negatives,respectively. 

Matthews Correlation Coefficient: The Matthews Correlation Coefficient (MCC) is a statistical 
metric used to evaluate the performance of the binary classification model. It considers true positives, 
false positives, false negatives, and true negatives from a confusion matrix to provide a single value that 
summarises the performance of the classifier [30]. The advantages of MCC over other metrics, such as 
accuracy, AUC, and F1 score, include its ability to handle imbalanced datasets and provide more 
informative results. It is a reliable measure for evaluating binary classifications in various scientific fields 
because it considers both types of errors, and is given by (27). 

𝑀𝐶𝐶  
𝑇𝑃 ∗ 𝑇𝑁 𝐹𝑃 ∗ 𝐹𝑁

𝑇𝑃 𝐹𝑃 ∗ 𝑇𝑃 𝐹𝑁 ∗ 𝑇𝑁 𝐹𝑃 ∗ 𝑇𝑁 𝐹𝑁
 (27) 

PRC Area: The PRC area, also known as the Average Precision (AP), refers to a performance metric 
that measures the balance between precision and recall across all possible thresholds for classifying 
positive cases. The PRC area is calculated by plotting the Precision-Recall Curve (PRC), which shows 
precision on the y-axis and recall on the x-axis for different thresholds, and calculating the AUC of PRC. 
A higher PRC area indicates a better model, meaning that it consistently maintains good precision and 
recall across varying thresholds. This is useful for imbalanced data sets. It focuses on the quality of 
positive predictions, making it suitable for problems in which the identification of true positives is crucial. 

Mean Absolute Error: Mean Absolute Error (MAE) is used for evaluating the regression model’s 
performance in ML. It provides the average magnitude of the errors between the actual and predicted 
values, without considering the direction of the errors, and is given by (28). 

𝑀𝐴𝐸  
1
𝑛

𝑦  𝑦𝚤  (28) 

where the number of observations is denoted by n, the actual value of the i-th observation is denoted by 
yi and ŷi is the value predicted for the i-th observation. 

Root Mean Squared Error: Root Mean Squared Error (RMSE) measures the average magnitude of 
the errors between the predicted and actual values in the dataset. This is given by (29). 

𝑅𝑀𝑆𝐸  
1
𝑛

𝑦  𝑦𝚤  (29) 

where n is the count of observations, yi is the real value of the i-th observation and ŷi is the predicted 
value of the i-th observation. 

6.2. Discussion of Results 
Overall performance: The study yielded outstanding results with both the 2-class and 5-class 

classification tasks. Random forests consistently outperformed the other ML algorithms across all metrics, 
demonstrating their effectiveness in discriminating between abnormal and normal heart sounds. 

5-Class Classification: All ML models yielded high accuracy, with random forests again yielding 
99.27%, as displayed in Table 3. There was a reduction in accuracy compared to the 2-class results, 
indicating the increased difficulty of multiclass classification.  Precision and specificity were observed 
to be very high, with random forests maintaining high values for both the metrics. The F-measure and 
recall metrics slightly decreased for all models in comparison to the 2-class case, suggesting some 
difficulty in distinguishing between specific valvular diseases. Although random forests achieved near-
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perfect performance for the ROC Area, kNN and SVM dropped significantly, indicating potential 
challenges in separating certain disease classes. Random forests performed well against the PRC Area 
metric, with other models showing a wider range of performance, suggesting that different models might 
be better suited for specific disease classification tasks. 

The MAE values for random forests (0.0296 for five classes and 0.0127 for two classes) were lower 
than those obtained by the other models, signifying that its predictions were better on average. The RMSE 
values for random forests (0.0816 for five classes and 0.0456 for two classes) were lower than those 
obtained by other models, indicating more accurate predictions with minimal errors in both cases. 

Table 3. Performance metrics for 5 classes. 

Metrics\Classifier 
Random 
Forests 

kNN SVM 
Naive 
Bayes 

MLP 

Correctly Classified 
Instances 

950 922 844 693 928 

Incorrectly Classified 
Instances 

7 35 113 264 29 

Mean absolute error 0.0296 0.0217 0.2469 0.1121 0.0169 

Root mean squared error 0.0816 0.1069 0.3267 0.3097 0.1005 

Specificity 0.002 0.009 0.03 0.069 0.008 

Precision 0.993 0.964 0.883 0.722 0.97 

Recall 0.993 0.963 0.882 0.724 0.97 

F-Measure 0.993 0.963 0.879 0.712 0.97 

MCC 0.993 0.955 0.852 0.653 0.962 

ROC Area 1 0.996 0.944 0.922 0.991 

PRC Area 0.999 0.987 0.825 0.827 0.982 

Accuracy 99.2685 96.6573 88.1923 72.4138 96.9697 

The accuracy metrics of all the classifiers for both combinations are shown in Figure 3. Tables 4–8 
display the confusion matrix for the 5-class combination of the five ML techniques. Only seven instances 
were incorrectly classified, further proving the superiority of the random forests technique.  

 
Figure 3. Accuracy of different classifiers. 
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The proposed models performed exceptionally which can be attributed to the fact that the audio 
features which give details about the patterns in the audio, changes in frequency and energy, and minor 
variations due to different types of murmurs were considered for the proposed model.  

Table 4. Confusion matrix for 5 classes and Random forests. 

AS MR MS MVP N 

200 0 0 0 0 

0 182 1 1 0 

0 0 186 0 0 

2 1 1 183 0 

1 0 0 0 199 

Table 5. Confusion matrix for 5 classes and kNN. 

AS MR MS MVP N 

195 3 2 0 0 

0 179 4 0 1 

0 2 177 3 4 

2 3 7 173 2 

0 0 1 1 198 

Table 6. Confusion matrix for 5 classes and SVM. 

AS MR MS MVP N 

195 0 1 3 1 

18 152 3 9 2 

4 1 167 11 3 

3 14 10 134 26 

4 0 0 0 196 

Table 7. Confusion matrix for 5 classes and Naïve Bayes. 

AS MR MS MVP N 

81 22 67 30 0 

24 143 7 10 0 

7 0 165 14 0 

4 10 13 116 44 

4 0 1 7 188 
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Table 8. Confusion matrix for 5 classes and MLP (NN). 

AS MR MS MVP N 

198 0 1 0 1 

5 174 2 3 0 

0 2 181 3 0 

3 5 4 175 0 

0 0 0 0 200 

2-Class Classification: All models attained an accuracy exceeding 90%, with random forests 
achieving a near-perfect 99.89% accuracy, as listed in Table 9. All models yielded high specificity and 
correctly identified normal sounds with only a few false positive rates. Random forests maintained high 
precision and recall for both normal and abnormal sounds, indicating accurate identification of both 
classes.  Both the ROC Area and PRC Area values reached 1 for random forests, kNN, and MLP, 
indicating perfect discrimination between normal and abnormal sounds. SVM, naive Bayes, and MLP 
performed slightly lower, suggesting that the extracted features and task complexity might be better 
suited for ensemble methods such as random forests. 

Table 9. Performance metrics for 2 classes. 

Metrics\Classifier 
Random 
Forests 

kNN SVM 
Naive 
Bayes 

MLP 

Correctly Classified 
Instances 

956 948 921 870 955 

Incorrectly Classified 
Instances 

1 9 36 87 2 

Mean absolute error 0.0127 0.013 0.0376 0.0894 0.0052 

Root mean squared error 0.0456 0.0805 0.194 0.2865 0.0395 

Specificity 0.004 0.006 0.039 0.064 0.008 

Recall 0.999 0.991 0.963 0.909 0.998 

Precision 0.999 0.991 0.965 0.927 0.998 

F-Measure 0.999 0.972 0.892 0.913 0.998 

MCC 0.997 0.972 0.962 0.767 0.994 

PRC Area 1 1 0.953 0.96 1 

ROC Area 1 1 0.962 0.956 1 

Accuracy 99.8955 99.0596 96.2382 90.9091 99.791 

Tables 10–14 show the confusion matrix for the 2-class combination using the five ML techniques. 
Only one instance was incorrectly classified, indicating the superiority of the random forests technique. 
Except for the naïve Bayes model which performed reasonably well, the other models performed 
exceptionally well. 

Table 10. Confusion Matrix for 2-classes and random forests. 

Normal Abnormal 
199 1 
0 757 
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Table 11. Confusion Matrix for 2-classes and kNN. 

Normal Abnormal 
199 1 
8 749 

Table 12. Confusion Matrix for2-classes and SVM. 

Normal Abnormal 
192 8 
28 729 

Table 13. Confusion Matrix for 2-classes and naïve Bayes. 

Normal Abnormal 
189 11 
76 681 

Table 14. Confusion Matrix for 2-classes and MLP (NN). 

Normal Abnormal 
198 2 
0 757 

Table 15 lists the outcome of this study and compares it against the results obtained by others. 

Table 15. Comparison of results. 

Reference Author(s) Methodology Dataset Used 
Accuracy 
(%) 

5-class classification 

[16] Yaseen et al. 

MFCC + Discrete wavelet 
transform features combined 
with SVM, DNN and centroid 
displacement kNN 

Yaseen dataset 97.9 

[31] Chowdhury et al. DNN Yaseen dataset 97.77 
[32] Khan et al. CNN and power spectrogram Yaseen dataset 98.87 
[12] Yadav et al. Statistical features Private dataset 97.78 

[26] Upretee et al. 
Spectral centroid frequency with 
kNN and SVM 

Yaseen dataset 96.50 

[13] 
Sathyanarayann 
et al. 

ML techniques with HOG and 
LBP texture feature as input 

Yaseen dataset 98.62 

Proposed 
method 

 Audio features and ML Yaseen dataset 99.26 

Binary classification 

[26] Upretee et al. 
Spectral centroid frequency with 
kNN and SVM 

Yaseen dataset 99.60 

[33] Taneja et al. LBP + chromagram 
PhysioNet 
2016 

94.87 

[34] Ibrahim et al. 
Temporal, spectral and 
geometric audio features and 
cubic SVM 

Private dataset 97 

[35] Milani et al. Time-domain features and ANN 
PhysioNet 
2016 

93.33 

[36] T. Li, &Yin et al. 
Freguency domain features and 
2D-CNN 

PhysioNet 
2016 

86 

[37] Vinay et al. XgBoost; No segmentation 
PhysioNet 
2016 

92.85 

[15] 
F. Li &Zhang et 
al. 

Improved MFCC and ResNet 
PhysioNet 
2016 

94.43 

[13] 
Sathyanarayanan 
et al. 

ML techniques with HOG and 
LBP textural features as input 

Yaseen dataset 99.79 

Proposed 
method 

 Audio features and ML Yaseen dataset 99.89 
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7. Conclusions 
This study investigated the possibility of building an ML model for the classification of heart sounds 

using a unique combination of audio features extracted from an audio dataset for training. The algorithm 
was not computationally intensive, and was built using a low-end system with minimal RAM. These 
results suggest the potential of the model as a valuable tool for accurate heart sound diagnosis in clinical 
settings. Further validation and refinement can significantly improve early disease detection and patient 
care. This study demonstrated the potential of using ML models for accurate heart sound classification.  

The extensive set of extracted features likely contributed to the success of the model. Exploring the 
features that had the most significant impact on each model's performance could further optimise the 
classification process. The model can be further optimised by experimenting with a subset of these 
features and studying the impact of each feature on the model’s performance. 

This study indicates the potential of ML models, particularly random forests, for classifying normal 
and abnormal heart sounds with very high accuracy. In both the binary and five-class settings, the 
extracted audio features combined with the chosen algorithms achieved near-perfect discrimination in 
many instances. These results show a promising future for AI-powered heart sound diagnosis, paving the 
way for earlier and more precise detection of cardiovascular diseases. 

The clinical implications of these findings are significant. Early detection of valvular diseases and 
other cardiac abnormalities is crucial to increasing the chances of patients being treated effectively. 
Ultimately, this could lead to timely intervention and optimised treatment. Cardiac diagnostic equipment 
integrated with AI, which is cheaper, quicker, reliable, and accurate, is set to revolutionise the first level 
of screening for heart diseases at the grassroots level. 
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