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Abstract: Underwater Wireless Sensor Networks (UWSNs) offer significant advantages due to their wide-ranging 

applications, largely dependent on the placement of sensor nodes. Effective algorithms for locating or identifying 

underwater target objects via UWSNs hinge on the sensor nodes' ability to accurately determine their surroundings, 

making this a key area of research. Enhancing localization for large-scale mobility in UWSNs is challenging due to 

adverse aquatic conditions, considerable node mobility, and the extensive scale of the network. Many experts have 

refined localization algorithms or developed new methods to improve target node accuracy, advancing the field. 

This work improves the node localization in UWSNs. It uses Time Difference of Arrival (TDOA) to measure 

distances and the Red Vulture Optimization Algorithm (RVOA) for precise localization. The method also employs 

Euclidean distances and window prediction to reduce errors and delays. The node mobility model predicts velocity 

and position over time. The proposed work is compared with existing methods like MPL, GA-SLMP, SLMP, and 

LSLS, demonstrating superior performance in energy efficiency, delay, prediction error, and localization coverage. 

Keywords:  underwater  wireless  sensor  network;  optimization;  localization  algorithm;  mobility; 

underwater node location 

 

1. Introduction 
In comparison to conventional wireless sensor networks (WSNs), underwater wireless sensor 

networks (UWSNs) provide a novel tool for genetic research [1]. As 70% of the Earth's surface is covered 
by water, there is a huge need for extensive research into monitoring and exploring different aspects of 
the ocean environment; hence, this system consists of multiple sensors and vehicles deployed to perform 
concert monitoring. In comparison to its width and length, the height of the WSN terrestrial deployment 
region is minimal. In most instances, the localization issue is analogous to the localization issue of a 2D 
plane.  

Consequently, depending on the application, underwater localization can be accomplished in two 
dimensions (2D) on a particular depth plane or in three dimensions (3D) in a specific volume of water. 
In addition, the location of the node of ground-based WSNs remains consistent during deployment. There 
is no dynamic evolution of the network structure, and external factors have no bearing on node 
movements. However, due to the impact of ocean currents and other environmental variables, underwater 
nodes might wander. The performance characteristics of electromagnetic waves employed by sensor 
nodes on land—compared to submerged network nodes. UWSN has numerous typical applications, 
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including marine surveillance, monitoring, industrial sensing, tsunami and flood warning systems, 
military, etc. As the underwater sensor nodes may communicate via acoustic waves, it is unnecessary to 
deploy costly and complex individual ocean monitoring equipment when utilizing UWSNs. 

1.1. Localization Techniques 
Different technologies, such as medium access control (MAC) and secure routing protocols, 

localization methods, and time synchronization systems [2], have been investigated for UWSNs. When 
discussing sensor nodes in UWSNs, we can categorize them as either reference nodes, unknown nodes, 
or anchor nodes. Unknown nodes collect surrounding data. To discover undiscovered nodes in the 
Network, anchor nodes are accountable. A reference node is a node whose location is unknown and an 
initial anchor node [3,4]. The localization process refers to the method by which an unidentified node 
learns its location by exchanging sparse messages with a small set of recognized anchor nodes or 
unknown nodes utilizing specialized localization technologies. Since node localization is the backbone 
of the UASN application, it is clear why it is crucial in sensor networks. Because the location of a node 
is essential for helpful data collection in UASNs, research into node-locating technologies is necessary. 
To be valid, sensor data typically requires localization [5]. This correlation between hop count and link 
length is problematic due to its effect on energy use and throughput. It is possible for a localization 
protocol's measurement to become outdated and produce position estimations that are wildly wrong if 
the process takes too long to converge. The estimation based on the localization method [6] monitors the 
estimated locations over time to fix the error and latency. The two main ways UWSNs determine 
individual nodes' positions today are range and range-free-based localization. Standard measuring 
techniques used in range-based localization include the time difference of arrival (TDOA), received 
signal strength (RSS) [7], and angle of arrival (AOA) [8], time of arrival (TOA). To determine the one-
way distance, the TOA formula compares the signal's transmission and reception timestamps. The sensor 
and the remote node must be online precisely for this strategy to work. When using TDOA-based 
localization [9], sensor nodes must be perfectly synchronized so that the time difference between when 
a signal is sent and when it reaches each node may be calculated. 

1.2. Problem Statement 
The diversity and uniqueness of the ocean's environment, UWS nodes have significantly greater, 

energy consumption, noise, cost, and interference and then their terrestrial equivalents. The range-based 
algorithm necessitates more complex ranging technology, which in turn necessitates more resources 
(both financial and otherwise) to operate. Range-free localization techniques heavily rely on the stability 
of the underlying internet services to ascertain the node's position. To address these concerns, we deploy 
an efficient localization approach capable of pinpointing mobile nodes in UWSN. Based on the distance 
from the anchor node, the precision of the distance estimate, and the latency in transmitting the 
information, this algorithm determines a fitness function. In addition, future node positions are predicted 
using prediction-based localization methods. Due to node mobility and slow acoustic wave speed, 
location predictions are inaccurate.  

Therefore, the movement needs to be considered during localization methods to produce more 
accurate and reliable location estimates. 

1.3. Contribution  
With the growing interest in maritime resource exploitation, underwater wireless sensor networks are 

a new area of investigation. Underwater WSNs localize. Due to the complexity of the aquatic 
environment, underwater wireless sensor networks, especially large-scale mobile networks, have trouble 
achieving synchronous localization. We reduced range error by improving the Time Difference of Arrival 
(TDOA) model. 

Long propagation delays, node mobility, and error probability plague UWSNs. Hybrid optimization 
yields a stable and scalable energy relationship between unlocalized and mobile sensor nodes, optimizing 
network lifespan and energy use. 

Due to prediction inaccuracy, prediction-based node localization cannot predict node mobility. 
Estimation-based methods avoid prediction mistakes and delays. 

The remaining portions of this document are structured as follows: In Section II, the relevant work 
related to the location of undersea nodes is described. In Section III, the model that is relevant to UASNs 
is presented as well as the localization of mobility node algorithm that was suggested. The findings of 
the simulation as well as an appraisal of its performance are detailed in Section IV. The conclusion can 
be found in Section V at the very end. Enhancements are planned for Section VI in the Future. 
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2. Comparison of Few Existing Work 
Optimizing the network topology in Underwater Sensor Networks (UWSNs) is essential for 

improving localization accuracy. Effective topology management addresses challenges such as signal 
attenuation, multipath propagation, and high latency typical of underwater environments. By strategically 
placing nodes and employing advanced algorithms like localization-based clustering or adaptive node 
mobility, the network can achieve more reliable communication paths and precise position estimation. 
As shown in Table 1, a comparative analysis of different optimization techniques reveals that 
localization-based clustering significantly reduces energy consumption and enhances accuracy compared 
to traditional flat network topologies. Conversely, adaptive node mobility methods provide greater 
flexibility and resilience in dynamic underwater conditions, despite potentially higher computational 
complexity. Additionally, combining acoustic communication with optical or electromagnetic methods 
can further improve localization, leading to robust and energy-efficient underwater sensor networks. 

Table 1. Comparison of Existing work. 

Author Method Name Objectives 
Simulation 
Tool 

Advantage  Disadvantage 

Yan, Jing, 
et al. [10] 

Mobility 
Prediction Using 
Asynchronous 
Localization 
Algorithm  

To eliminate the 
effect of 
asynchronous 
clocks and 
compensate for 
the mobility of 
sensor nodes, an 
asynchronous 
localization 
algorithm with 
mobility 
prediction 

MATLAB 
2016B 

Solve the issue 
of 
synchronization 
of the clock and 
error node 
mobility 
prediction 

Computation 
Complexity 

Ullah, 
Inam, et 
al. [11] 

Distance-angle 
based algorithm 

Reduced the 
error-based 
estimation using 
distance-based 
and angle-based 
localization 
algorithms 

Not 
Mentioned 

Promote the 
finding of errors 
and accuracy of 
sensor location 

Needed to 
reduce the 
localization 
estimation 
error 

Saeed, 
Tareq Y et 
al. [12] 

A robust 3-D 
localization 
method 

Achieving the 
accurate 
estimation 
the missing 
inter-node 
distances in 
transmission 
distance of 
underwater 
optical sensors 

Not 
Mentioned 

To solve the 
issue of node-
link 
connectivity 

Needed to 
enhance the 
localization 
accuracy 

Saeed, 
Nasir, et 
al. [13] 

Received signal 
strength (RSS) 
based 
localization 
framework  

By estimating 
the shortest 
paths, the 
energy 
consumption 
and error are 
pruned. 

MATLAB 
Reducing the 
estimation error 
in accurate 

Energy 
Consumption 
is not 
concentrated 
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Shams, 
Rehan, et 
al. [14] 

Joint Algorithm 
of Multi-Hop 
Localization and 
Time 
Synchronization 

By using a 
multi-hop 
environment, 
the author  
extend the range 
and enhance the 
network 
connectivity to 
provide more 
accurate 
localization and 
Synchronization 
technique. 

Not 
Mentioned 

Error reducing 
in node 
localization 
finding 

Data collision 
and clock 
skew 

Han, 
Guangjie, 
et al. [15] 

Delay 
optimization and 
data collection 
based on the 
Prediction 
algorithm 

Reducing the 
prediction-
based data 
transmission 
delay in AUV-
UASNs) 

MATLAB 

Latency is 
minimized for 
data distribution 
and node 
location finding 

Error is not 
calculated 
accurately 

Zhang, 
Wenbo, et 
al. [16] 

movement 
prediction 
location 

Node movement 
prediction is 
developed to 
achieve accurate 
transmission  

MATLAB 

Power 
Consumption is 
low, and High 
accuracy in 
node prediction 

High energy 
consumption 

Rao, 
Madhuri, 
et al. [17] 
 

Cat Swarm 
Optimization  
(CSO) 
 

Node mobility is 
achieved 
according to the 
Articulation 
point in UASN 

Not 
Mentioned 

Good 
convergence 
High reliability 

High energy 
consumption 

Datta, A. 
et al. [18] 

Doppler shift-
based 
localization  
genetic 
algorithm-based 
optimization 
technique 
 

Promote the 
unknown node 
finding 
accuracy 

MATLAB 
Minimize the 
error, improve 
accuracy 

High 
Computation 
time 

Sun, 
Yujiao, et 
al. [19] 

Virtual force and 
particle swarm 
optimization 
(VF-PSO).  
 

For maximum 
coverage 
achieved the 
purpose, 
tracking is 
performed on 
the mobile node 
according to the 
ideal position. 

Not 
Mentioned 

Good Coverage 
Performance, 
Convergence 
speed, Energy 
consumption 

Does not 
consider the 
problem of 
information 
transmission 
between 
nodes. 

Shah S. et 
al. [20] 

LFEER 
Co-LFEER 
 

The efficient 
localization-free 
routing protocol 
for energy 
management 

MATLAB 

Energy is 
increased, PDR 
of the Network 
is improved 

High delay 

Shanthi, 
M. B., and 
Dinesh K. 
et al. [21] 
 

FRAME Work 
based on 
probabilistic 
model 

Minimizing the 
attacks in node 
information 
transmission 

Not 
Mentioned 

Improve Node 
localization, 
Effectiveness 
Security 

Effective 
solutions to 
address this 
are lacking 
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3. Proposed Methodology 

3.1. Network Model 
A three-dimensional acoustic sensor network is currently being developed to monitor the 

oceanographic environment. This Network consists of a gateway buoy located at the surface, a network 
of sensor nodes consisting of a floating node and an Anchored Node implemented at the seafloor, and a 
satellite-connected onshore station. A wired connection between each sensor and the gateway node is the 
first potential approach that can be considered (buoy). Adjusting the cable length allows for fine-grained 
control over the sensor’s working depth. In addition, the anchored sensor node has a connection to a 
pump-inflatable buoy. To maintain a consistent depth for the sensor node, the buoy's primary function is 
to drag the sensor closer to the surface of the water. Real-time data is generated by all components of the 
UASN, including buoys and underwater sensor nodes on the ocean floor. This data is then transmitted 
by satellite to a base station or an onshore station. The base station and the deep water-based station 
(Offshore) of the Network are utilized to collect, process, integrate, and send data information while also 
determining the locations of nodes. Figure 1 illustrates the Network's recommended model for the system. 

 
Figure 1. Underwater Acoustic Sensor Network Architecture Model. 

3.2. Communication Model 
The most power-hungry parts of sensor nodes in underwater acoustic communications are those 

responsible for exchanging information between them. Attenuation and energy loss in the signal are 
triggered by environmental conditions such as background noise, pH, and temperature in the underwater 
channels. Since the transmission mode accounts for 80% of the maximum energy consumption, adjusting 
the transmitter's power output can significantly impact power usage. To keep the model as simple as 
possible, only the energy cost of sending and receiving packets by nodes was considered in this study. 
The power requirements of acoustic sensors for transferring data packets between sensor nodes in 
Equation (1) as below, 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑑 𝑃𝑜𝑤𝑒𝑟 𝑇𝑖𝑚𝑒  
                                                                      =𝑃𝑜𝑤𝑒𝑟 𝐴𝑡𝑡𝑒𝑛𝑡 𝑇𝑖𝑚𝑒  (1) 

The time duration of transmitting the packet is expressed for a node as, 

𝑇𝑖𝑚𝑒  
𝑙
𝜆

.𝐵 𝑙  (2) 

where 𝑙 denotes packet size in bits, 𝐵 𝑙  represents bit rate, and λ indicates coding efficiency. 
The parameter for calculating the power attenuation of an acoustic signal with a constant frequency 

in an environment that is submerged in water is as follows, 

𝐴𝑡𝑡𝑒𝑛𝑡 𝑓𝑑 𝑃𝑜𝑤𝑒𝑟𝐴𝑡𝑡𝑒𝑛  (3) 

where 𝑝𝑓  is the power factor indicating the model's acoustic communication type, with 𝑝𝑓  = 1 
representing cylindrical propagation and 𝑝𝑓 = 2 representing spherical propagation. Signal frequency 



400 
 

affects power attenuation parameter𝑓𝑑 . When compared to the amount of energy that is used for 
transmitting data, the amount of energy that is used for receiving data in UASNs is comparatively low, 
𝑃𝑜𝑤𝑒𝑟  Is (in J), the power attenuation function is: and may be stated as, 

𝐴𝑡𝑡𝑒𝑛𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑖𝑧𝑒, 𝑓𝑟 𝑙 𝛼 𝑓𝑟  (4) 

where𝑓𝑟indicates frequency, 𝛼 𝑓  denotes absorption coefficient𝑑𝐵 𝑚. 
The following equation provides the absorption coefficient, 

𝛼 𝑓 0.11  
𝑓𝑟

1 𝑓𝑟
 44  

𝑓𝑟
4100 𝑓𝑟

2.75 10   𝑓𝑟 0.003 (5) 

The energy consumption is presented when sending the 1-bit data in the sensor node as, 

𝐸𝑛𝑒𝑟𝑔𝑦  𝑃𝑜𝑤𝑒𝑟 𝐸𝑛𝑒𝑟𝑔𝑦  (6) 

where 𝐸𝑛𝑒𝑟𝑔𝑦 es energy an acoustic sensor node consumes whenever one bit of data is being 
processed. When compared to the amount of energy that is used for transmitting data, the amount of 
energy that is used for receiving data in UASNs is comparatively low. 

3.3. Proposed Algorithm 

Range measurements allow us to determine how far away the unknown is from our fixed points. 
Several options exist for range-based methods, each optimized for a different physical characteristic used 
in range estimation. Regular nodes can make references to unknown nodes and reference points. Beacon 
nodes are those whose locations are known, while unknown nodes are those for whom no data is available. 
The signal from the mysterious node will be broadcast to the neighborhood one by one. The ranging 
mechanism operates when the sending and receiving nodes are within communication range. One at the 
source node and one at the destination node are the only transmission procedures determining the range 
between every one of the identified nodes and the target node. Those other nodes merely need to be able 
to listen to broadcasts. Since data receipt necessitates less energy than data transmission, this technique 
can reduce energy consumption. A back off period also happens when the node being located is given 
the range request before the sending of the answer message. By doing so, we can avoid the data loss or 
delay that results from a message collision, and we can reduce the node's overall energy consumption by 
shortening the retransmission process. The TOA and TDOA location estimation methods discussed in 
this study improved performance—both in terms of average error and failure rate—when the range 
estimate error was decreased. The suggested methodology is shown in Figure 2. 

Figure 2. Proposed Methodology. 

As a result, we ought to work on achieving a range estimation with higher precision to enhance the 
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location. Two-way ToA and TDoA eliminate the requirement for time synchronization, in contrast to 
one-way ToA, which only provides one-way ToA. However, more message exchanges are necessary, 
and a higher amount of energy is used compared to TDOA. When performing localization using TDoA 
measurements, it is essential to have a sensor network that is correctly synchronized (about the speed at 
which the signal is propagating). In the TOA method, the TOA of the satellite signal is what is utilized 
to arrive at an estimate of the satellite's pseudo-range concerning the user. Calculating the amount of time 
that has passed since the transmission of a signal from one satellite to another is one of the steps involved 
in the TDOA method. The introduction of optimization algorithms, which mimic the behavior of 
organisms on the hunt for food, has a wide range of applications for finding optimal solutions to complex 
functions and provides fresh ideas for the TDOA localization problem, as shown in Figure 3. 

After that, the time difference between the unknown node and the anchor nodes can be used to 
calculate the distance difference between the two sets of nodes. For instance, if we know the distance 
difference between the unknown node and the known nodes, we know that the unknown node is on the 
hyperbola with the known nodes as the focal points. Similarly, the novel is on the hyperbola, with the 
known nodes as the focal points. Furthermore, the coordinates of the unknown node can be determined 
by solving for the intersection of the hyperbolas following some known conditions. 

 
Figure 3. TDOA Localization Strategy. 

To measure the TDOA joint localization of the velocity and position of an unknown source by making 
use of the time and frequency discrepancies between the source and two well-known nodes, collaborative 
localization of the TDOA is utilized. Assuming there are S sensors located at random throughout the 
three-dimensional region of the ocean, we can determine the location of the unknown source by𝑢𝑠
𝑎, 𝑏, 𝑐 While the velocity is expressed as 𝑢𝑠′ 𝑎′, 𝑏′, 𝑐′ , the position of the 𝑖  𝑡ℎ𝑒  sensor is 

denoted with𝑛′ 𝑎 , 𝑏 , 𝑐 , it is velocity by 𝑛′ 𝑎 ′,𝑏 ′, 𝑐 ′  where i = 1,2,3…, S. Given these 
parameters, the distance between the sensor node and the unknown origin is, 

𝑑  ‖𝑢𝑠  𝑛 ‖ 𝑢𝑠 𝑛  𝑢𝑠 𝑛  (7) 

It is possible to express the noise-containing distance 𝑟 ,  as where 𝑑 ,
⬚ 10 is the theoretical distance 

difference between the unknown source with sensor i = (i 1) and sensor, and 𝑟 , 1 is the actual distance 
difference measured by the sensor in dispute, 

𝑑 , 𝑝  𝑡 ,  𝑑 , 𝑙 , 𝑑 𝑑 𝑙 ,  (i = 2,3,…S) (8) 

In this case, p is the signal propagation velocity, 𝑡 , , is the TDOA measurement, 𝑙 , 1 is the noise 
added by the measurement at i=1, and 𝑑  = ‖𝑢𝑠  𝑛 ‖. The equation is where the time data is kept (8). 
The relationship between I and 1 is analogous to finding the rate of change in the distance between the 
unknown source and the sensors by utilizing the first sensor as a reference sensor, i and 1 are, 

𝑑′ , 𝑑′ 𝑑′  (9) 

d1

d2

d3

known Node Unknown Node
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𝑑′   
𝑢𝑠 𝑛  𝑢𝑠 𝑛

𝑑
 (10) 

In this way, a matrix provides a convenient way to represent distances and the rates at which they 
change: 

𝑑  𝑑 , ,𝑑 , , … ,𝑑 ,
 
𝑎𝑛𝑑 𝑑′ , ,𝑑′ , , … ,𝑑′ ,

  (11) 

We use the following matrices to determine the erroneous values: 
𝑑 𝑑2,1,𝑑3,1, … ,𝑑𝑆, 1  and d’= 𝑑 2,1,𝑑′3,1, … ,𝑑′𝑆, 1  . Consequently, we can obtain, 

𝑑 𝑑 𝑙  (12) 

𝑑′ 𝑑′ 𝑙′  (13) 

The TDOA measurement error matrix is denoted by n, while the FDOA error matrix is dnoted. 
Additionally, 𝑙2,1, 𝑙3,1, … , 𝑙𝑆, 1   and 𝑙′2,1, 𝑙′3,1, … , 𝑙′𝑆, 1  . Vectors represent the error in the 
distance difference and the rate of change in the distance. Furthermore, we can assume that 𝑙 𝑙 , 𝑙 , 
and further, assume that 𝑙  is the Gaussian noise distribution with a mean of zero and a covariance matrix 
of Q. Mobile underwater source localization system diagram is shown in Figure 1. 

3.4. Red Vulture Optimization Algorithm 
In this research, we offer a localization technique for underwater sensor networks that uses an 

enhanced version of the red vulture optimization algorithm to pinpoint precisely the locations of in-the-
field sources in motion. Recent years have demonstrated nature's prowess as a designer of committed 
behaviors that optimize actions in conditions that pose different challenges to performers. Animals' 
abilities as hunters, communicators, breeders, and foragers are displayed for our amusement. Curious 
occurrences in the natural world of plants and other elements also motivate scientific progress. 
Furthermore, hybrid optimization is crucial in resolving the optimization problem and significantly 
enhancing accuracy. To address this location and velocity-based localization estimation mistake, 
researchers combined the red fox optimization and the African vulture optimization to create the Red 
Vulture Optimization. A large number of samples allows the suggested method to converge to the global 
optimum, which is responsible for its enhanced performance. To begin, African Vulture Optimization's 
limited local search capability is considered. Pre-processing the initial population with the Red Fox 
method, then improving the search depth with the location and velocity update formulae, yields the 
hybrid Red Vulture algorithm. The red fox is an effective predator of both domestic and wild small 
animals. A fox will seize any opportunity for sustenance as it travels across its territory and will sneak 
up on its victim until it is close enough to make an effective assault. In our method, the fox's territorial 
exploration of food after spotting its prey in the distance is modeled as a worldwide search. The second 
stage is a local search that involves moving across the habitat to get as close to the prey as possible before 
making an assault. Our approach to fixing the localization estimation inaccuracy was similarly informed 
by how vultures act when finding food and settling down with their prey. 

To accomplish this, the Red Vulture Optimization Algorithm (RVOA) is utilized to pinpoint the 
precise location of the known and unknown nodes, with the ideal first-level nodes serving as reference 
points. The step by step process of RVOA is shown in Algorithm 1.  

Figure 4 depicts the RVOA method flowchart. Survival patterns of foxes and vultures in such hunting 
situations inspired the RVOA to set such limits. This RVOA technique uses the TDOA's velocity output 
and the distance between known and unknown nodes based on position as input to achieve an optimal 
localization estimate. In Table 2, we can see the Red Vulture Optimization Algorithm. In further 
iterations, RVOA's population will always have the same amount of nodes. A point with their respective 
coordinates is used to designate each of them. 

a = (a0, a1,., an−1) (14) 

We add the notation 𝑎 , where k is the population total number of nodes and each node in Iteration 
w 𝑎  .l denotes coordinates determined by the dimensions of the solution space, to distinguish is 
identified by a unique set of coordinates, denoted by l, defined by the dimensions of the solution space. 
We suppose that foxes explore the solution space using the presented equations to discover the optimal 
values for the criterion function. As each fox in a pack is crucial to the group's continued existence, so 
are the unknown nodes in this analysis. If food is scarce where they are, or if they want to see the world, 
members of the herd will travel great distances to find it. They return home and teach their loved ones 
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what they've discovered to increase their chances of survival and success. As we model our way around 
the neighborhood, we make sure to take everyone's health into account. The proposed strategy assumes 
that the most qualified individual has visited the world's most interesting locations and can share their 
insights with others back at home. So, we begin by arranging the population in the order of fitness, and 
then we calculate the square of the Euclidean distance between each individual as follows, 

ℎ 𝑎 , 𝑎 ‖ 𝑎 𝑎 ‖, (15) 

and we move individuals in the population toward the best one 

𝑎 𝑎 𝛼𝑠𝑖𝑔𝑛 𝑎 𝑎  (16) 

Therefore, the optimal solution for locating known nodes and identifying unknown nodes within their 
communication range may be determined. Using an algorithm inspired by African vultures' behaviors, 
we can significantly lower the best solution error. When hungry, vultures have low energy and can only 
fly short distances, but they can cover great distances when they're well-fed. 

Table 2. Parameter for proposed model simulation. 
Specifications Details 

Value of buoy nodes 50 

Value of underwater sensor node 12, 200, 320, 400, 600 

Range of Communication (R/m) 120 

Predicted Window Size (𝑡 /𝑚𝑖𝑛) 10, 20, 30, 40, 50, 60 

Velocity ( ) 1,500 ) 

Transmit/receive Node power (W) 35/0.3 

 

Return best 
value of position 
and velocity of 

nodes 

End

Initialize the 
RVOA 

parameters

Give the velocity, Position of  
known node and unknown 

node 

Generate the population,  parameter 
with maximum iteration 

Update the position and
 velocity of known and 

unknown node

           |F|≥1

       

      rand≤q1

   rand≤q2

Update velocity, 
position of nodes 
using Equation 

(20)

Update velocity, 
position using 
equation (22)

Update velocity, 
position of nodes 

using equation (24)

Update velocity, 
position of nodes 

using equation (26)

        |F|≥0.5

   rand≤q3

Update velocity, 
position of nodes 

using equation (29)

Update velocity, 
position of nodes 

using equation (31)

Yes

Yes
Yes

Yes No
No

No

Fitness 
Cal

Save the best solution αbest
α<T
Or
α=T
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Figure 4. Proposed Red Vulture Optimization Algorithm (RVOA) flowchart. 
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Algorithm 1: AVOA Algorithm 
1. Define: the number of iterations 𝑇, the maximum of the population 𝑛, velocity, position, fitness 
function 𝑓(⋅), size of search space solution  
2: Input velocity, position 
3: Generate a population consisting of 𝑛 nodes at random within the search space, 
4: 𝑡∶= 0, 
5: while 𝑡 ≤ 𝑇 do 
6: Define coefficients for Iteration: RVOA approaching change 𝑎, 
scaling parameter 𝛼, 
7: for each known node in the current population, do 
8: Sort individuals according to their fitness function, 
9: Select (𝑏𝑒𝑠𝑡)𝑡, 
10: Calculate the reallocation of individuals according to Equation (15), 
10: Update the F using Equation (16) 
11: if (|F| ≥ 1) then 
12: if (P1 ≥ randq1) then 
13: Update the velocity and location of nodes using Equation (20) 
14: else 
15: Update the velocity and location nodes using Equation (22) 
16: if (|F| < 1) then 
17: if (|F| ≥ 0.5) then 
18: if (P2 ≥ randq2) then 
19: Update the velocity and location nodes using Equation (24) 
20: else 
21: Update the velocity and location nodes using Equation (25) 
22: else 
23: if (q3 ≥ randq3) then 
24: Update the location, and velocity nodes using Equation (27) 
25: else 
26: Update the location and velocity of Vulture using Equation (29) 
Return Best location, velocity1𝑏𝑒𝑠𝑡)𝑡, 

When hungry, though, vultures can't fly as far and must fight other vultures for scraps. Vultures can 
also become aggressive when they are hungry. This phenomenon has been mathematically modeled using 
Equation (17). Vulture hunger and satiety rates have also been used to gauge when to transition from 
discovery to exploitation. Since the satiety rate tends to decrease over time, Equation (17) has been used 
to represent this phenomenon. 

𝑆 𝑑 𝑠𝑖𝑛
𝜋
2

𝑖𝑡𝑒𝑟
max 𝑖𝑡𝑒𝑟𝑠

𝑐𝑜𝑠
𝜋
2

𝑖𝑡𝑒𝑟
max 𝑖𝑡𝑒𝑟𝑠

1  (17) 

𝑆 2 𝑟𝑎𝑛𝑑 1 𝑧 1
𝑖𝑡𝑒𝑟

max 𝑖𝑡𝑒𝑟𝑠
𝑤 (18) 

In Equations (17) and (18), 𝑆  denotes that the vultures are at total capacity, Iteration indicates the 
number of iterations currently in progress, and masters are the maximum number of iterations. 

Phase 3: Research The AVOA's discovery phase is dissected here. Vultures have keen eyesight, a 
fantastic sense of smell, and an innate ability to find food in the wild. It can be pretty tricky for vultures 
to find food. Before venturing far in search of food, vultures expend significant effort inspecting their 
immediate vicinity. Vultures in the AVOA can employ one of two methods to randomly select one of 
several possible exploration destinations; this strategy selection is controlled by a parameter named Q1. 
This parameter's value, which should be set before the search operation begins and can take on values 
between 0 and 1, will determine which of the two methods will be used. 

In the ransQ1 exploration phase, a random number between 0 and 1 is generated and utilized to select 
a strategy. If this value is more than or equal to the Q1 parameter, then Equation (20) is used. The usage 
of Equation (8) occurs, however, if the value of rand Q1 is less than Q1. Each Vulture here is scouring 
the area for meals in a completely random fashion. This is shown as an example in Equation (19). 

𝑄
𝐸𝑞 6 𝑖𝑓𝑄 𝑟𝑎𝑛𝑑
𝐸𝑞 8 𝑖𝑓𝑄 𝑟𝑎𝑛𝑑

 (19) 
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𝑄 𝐶 𝑘 𝑉 𝑘 𝑆 (20) 

𝑉 𝑘 |𝑋 𝐶 𝑘 𝑄 𝐾 | (21) 

Consistent with Equation (20), vultures will forage for food at random distances from one of the two 
groups' finest cultures, where F is the rate of vulture satiation in the current Iteration and Q(i + 1) is the 
subsequent vulture position vector. C(i) is one of Eq's finest vultures. Equation (21). Moreover, X's 
vultures migrate randomly to protect prey from other vultures. Using the formula X = 2 rand, where a 
rand is a random number between 0 and 1, X is employed as a coefficient vector to increase the random 
motion, which changes with each Iteration. Q represents the current vector location of the Vulture (i). 

Q(K+1) = C(k) S+ 𝑟𝑎𝑛𝑑 𝜇𝑒 𝑙𝑒 𝑟𝑎𝑛𝑑 𝑙𝑒  (22) 

C(k) is one of the best-selected vultures in the current Iteration and is utilized in Equation (22). F is 
the rate of vulture satiation for the current Iteration, as obtained by applying Eq. mand2 has a random 
number between 0 and 1 and is equal to 18. The upper bound and lower bound of variables are displayed. 
Equation generates a simple model for the random production of solutions in the range. In the AVOA 
(22), by utilizing mand3, the randomness coefficient is increased. A random motion is added to the le if 
mand3 is given a number close to 1, resulting in a similar distribution of responses. 

𝑄
𝐸𝑞 10 𝑖𝑓𝑄 𝑟𝑎𝑛𝑑
𝐸𝑞 11 𝑖𝑓𝑄 𝑟𝑎𝑛𝑑

 (23) 

 
Equations (10) and (11) are used to model this step. 

𝑄 𝑉 𝑘 𝑆 𝑟𝑎𝑛𝑑 𝑑 𝑤  (24) 

𝑑 𝑤 𝐶 𝑘 𝑄 𝑘  (25) 

Using Equations (26) and (27), the rotational flight is expressed (27). 

𝐺 𝐶 𝑘
𝑟𝑎𝑛𝑑 𝑄 𝑘

2𝜋
𝑐𝑜𝑠 𝑄 𝑘  

𝐺 𝐶 𝑘
𝑟𝑎𝑛𝑑 𝑄 𝑘

2𝜋
𝑠𝑖𝑛 𝑄 𝑘  

(26) 

𝑄 𝐶 𝑘 𝐺 𝐺   (27) 

where Eq. is used to derive G1 and G2 (26); finally the location of the vultures is updated using  
Equation (27). 
 

𝑄
𝐸𝑞 16 𝑖𝑓𝑄 𝑟𝑎𝑛𝑑
𝐸𝑞 17 𝑖𝑓𝑄 𝑟𝑎𝑛𝑑

 (28) 

Equations (29) and (30) have been utilized to model this vulture movement. 

𝐽 𝑏𝑒𝑠𝑡 𝑣𝑢𝑙 𝑘
𝑏𝑒𝑠𝑡 𝑣𝑢𝑙 𝑘 𝑄 𝑘
𝑏𝑒𝑠𝑡 𝑣𝑢𝑙 𝑘 𝑄 𝑘

𝑆 

𝐽 𝑏𝑒𝑠𝑡 𝑣𝑢𝑙 𝑘
𝑏𝑒𝑠𝑡 𝑣𝑢𝑙 𝑘 𝑄 𝑘
𝑏𝑒𝑠𝑡 𝑣𝑢𝑙 𝑘 𝑄 𝑘

𝑆 

(29) 

𝑄
𝐽 𝐽

2
 (30) 

This motion is modeled using Equation (31). 

𝑄 𝐶 𝑘 |𝑑 𝑤 | 𝑆 𝐿𝑒𝑣𝑦 𝑑  (31) 

The equation is used to calculate the US (32). 
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𝑈𝑆 0.01
𝜇 𝜎

|𝐷|
,𝜎

𝛾 1 𝛽 𝑠𝑖𝑛
𝜋𝛽
2

𝛾 1 𝛽 𝛽 2
𝜃 1

2

 (32) 

In Equation (18), d represents the number of dimension's problem, u &D are random numbers 
between 0 and 1is always set to 1.5 as a default. 

Based on beginning values and interference settings, a new localization model is created with 
localization error as the objective function to retrieve the source's initial value. The localization error is 
used as the objective function to estimate the unknown source parameter under the assumption that each 
measurement has Gaussian noise and does not account for other error components. The new localization 
model uses the target parameter error and the original target position and velocity estimates. We then 
utilize weighted least squares to locate and speed up the source. 

Possibly the AOA seen by the receiver is not the direct path. In this case, the data have little to no 
relationship to the accurate AOA of the transmitter and can be treated as a normally distributed random 
variable. It is possible to express the likelihood of AOA mistakes using a mixture of the Gaussian and 
uniform distribution functions. A device's location can be determined without outside interference by 
finding where the line segments connecting at least two reference nodes connect. More than two 
directional lines can't follow at a single point. When there's background noise. As a result, further 
processing is needed to ascertain the best possible position estimation. All the unidentified nodes can talk 
to the known ones. Because of the reference nodes, the locations of all the blind nodes may be calculated. 
With information on the angles measured from several unknown nodes and reference nodes, the below 
equation 33 can be used to determine where precisely the node in question should be positioned. 

𝑎 𝑛 (33) 

where n is the accurate AOA, n is the noise in the AOA data, and is the matrix representing all the AOA 
readings. However, there are always some unavoidable inaccuracies in the measured data in the real 
world. Since the locations of the nodes in the excited area (reference nodes and unknown nodes) can be 
used to determine both, it follows that the unknown locations play a role in determining. Thus, we can 
get a better idea of the blind nodes' locations by bringing them closer together 𝜃 𝛼.  

The current location data is used to anticipate future mobile models, estimating the future location. 
Given that the algorithm for movement prediction treats each prediction window as a separate prediction 
unit, the algorithm splits the total positioning time into several prediction windows, each of which has a 
length of Tm. The node then executes actual positioning every other Tm. 

 
Figure 5. Prediction Window Model. 

The motion behavior of nodes in the preceding prediction window is predicted by the algorithm 
utilizing the velocity data from the most recent prediction period as shown in figure 5. This is done under 
the assumption that the motion behaviors of nodes do not suddenly change between successive prediction 
periods in the prediction window. By comparing the node's actual location to its anticipated location in 
the kth period, we can calculate the RVOA algorithm's location inaccuracy. Once one prediction window 
is finished, the process continues to the next. 
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4. Result and Discussion 

4.1. Experimental and Simulation  
For node localization prediction, the Angle Time of the Red Vulture Arrival Approach (ATRVA) 

approach that was just  
Proposed is simulated and evaluated with the help of MATLAB software. MATLAB is the software 

that is used to run the simulations. Several presumptions are made concerning the capabilities of the 
modems and the communications channel. The assumption is that autonomous underwater vehicles 
(AUVs) can transfer information effectively with active and passive sensor nodes and that data packets 
sent during communication can be received appropriately. The simulation parameters are listed in  
Table 2. 

We take into account the timing estimate noises at the receiver nodes so as not to lose the generality 
of the statement. In the simulation, 20 sensors, 50 reference sensors, and 30 source sensors spread across 
an area of 1,000 meters on each side. 

4.2. Performance Analysis  
The algorithm’s performance is analyzed in this work from two different vantage points: the location 

error and the energy consumption of the nodes. In this way, an Angle Time of the Red Vulture Arrival 
Approach (ATRVA) is studied to evaluate a system's accuracy, location coverage, energy consumption, 
propagation delay, transmission delay, average delay, execution delay, and prediction error.  
In the beginning, we investigate how the accuracy of the localization is affected by the error(s) introduced 
by the measured transmission error and the transmission speed/velocity. As a result of errors in error 
localization estimation and prediction, there is also an increase in the amount of energy consumed. The 
error distribution pattern of the measured distance is determined by how drifting patterns of time and 
velocity interact. Although the speed of sound in water exhibits some degree of variability, this factor 
has a negligible effect on the accuracy of distance measurements, provided that accurate time 
synchronization can be preserved. In these situations, it can be quite difficult to locate the sensor nodes 
in the most advantageous areas to maximize the coverage and their lives. At this point, monitoring 
underwater acoustic sensor networks in coastal monitoring is the top priority for sustainable development. 
Accurate localization of mobile node discovery is the appropriate way to handle the issue. Because 
deploying sensors in water resources, particularly underwater resources, and replacing their batteries 
come with a substantial financial burden, it is essential to implement UASN using the fewest possible 
sensors while maximizing both coverage and the sensors' lifetimes. According to this, the Red Vulture 
Optimization Algorithm (RVOA) that we have presented can be utilized to cut down on the location 
estimation inaccuracy in an effective manner by picking the best solution possible based on the most 
accurate function value shown in Figure 6. 

As shown in Figure 6, an innovative optimization approach is used to find the optimal point and value 
for the function to minimize inaccuracy. The fitness value, also known as the function value, is 
determined using 32 variables to assess the current state. As a direct consequence of this, the value of 
434.709 is achieved. The hybrid red fox and African vulture methods assist with the estimate error by 
attaining the best value, 338.607, by assessing the best point among 32 variables. This helps out with the 
estimation error. When the searching distance of the better-using behavior of fox was increased through 
600 iterations, the fitness values did not improve; on the other hand, when the searching distance of the 
best vulture behavior was increased through those same iterations, the fitness values changed in the 
direction of a better deal. In direct correlation with this, the 600 iterations with optimization are utilized 
to significantly reduce the amount of errors made and the amount of energy consumed. 
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Figure 6. Novel Optimization Analysis. 

4.3. Delay Based on Iteration 
As seen in Figure 7, the Angle Time of the Red Vulture Arrival Approach (ATRVA) can reduce the 

average delay compared to other algorithms. Furthermore, as we get closer to the end of the iterations, 
the performance of ATRVA improves. This is because the interaction between nodes decreases with time, 
and as a result, the nodes become more familiar with one another. Therefore, individuals make decisions 
regarding the importance of trust with greater awareness. As a consequence, our suggested method is 
superior to others such as MPL, GA-SLMP, SLMP, and LSLS in that it can reduce the delay while 
simultaneously increasing the number of iterations. 

 
Figure 7. Analyzing the Average Delay. X axis iteration = 10 iteration, Y axis 1ms =1 ms. 

A comparison of the amount of energy used by the Angle Time of the Red Vulture Arrival Approach 
(ATRVA) algorithm can be seen in Figure 8. In light of this, a high- iteration analysis consisting of 5000 
iterations was carried out to investigate energy use. As has been demonstrated, ATRVA has the lowest 
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energy consumption and helps us extend networks' lifetime by tuning the weight of consumed energy 
during data transmission through accurate node location detection in 400 iterations. This allows us to 
adjust the weight of consumed energy in a way that will enable us to extend the lifetime of networks. 

 
Figure 8. Energy Consumption based on Iteration. 

4.4. Location Coverage 

The research community has placed substantial emphasis on area coverage due to its status as an 
essential performance parameter for UASN. The primary purpose of the model that has been developed 
is to address the issue of how to handle the possibility of having coverage holes when the placements of 
the sensors are wrong. This is because the coverage confidence might be reduced when the location 
inaccuracy is ignored or estimated imprecisely. This is what sparked this idea. To accomplish this, the 
suggested model is contrasted with several other methods already in use, including MPL, GA-SLMP, 
SLMP, and LSLS. As a direct consequence, the comparison of location coverage can be seen in  
Figure 9. 

 
Figure 9. Localization Coverage vs. Number of sensors. 

The coverage rate is the area covered by the sensor nodes in the region, as shown in Figure 9, which 
illustrates that this is the case. The coverage rate of the proposed ATRVA is compared with the coverage 
rates of other existing research works, taking into account the number of sensor nodes as 12, 200, 320, 
400, and 600, respectively. The work presented has a reasonable coverage rate thanks to 200 sensor nodes. 
The currently implemented results execute location coverage. However, they are inefficient and cannot 
reach a greater coverage rate. 
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4.5. Prediction Error 

According to Figure 10, when the forecasting interval increases, the predicting error also increases. 
This is because many unknown components are involved in the wireless sensor network monitoring 
system. To analyze the accuracy of the prediction, a total of 30 sensor nodes are used. When only a few 
data points are used to make the model and the prediction (which results in a larger forecasting interval), 
the model cannot effectively reflect the system, which results in a more significant prediction error. 

 
Figure 10. Prediction Error Analysis. 

4.6. Propagation Delay  
When used for mobile node localization procedures, there is a significant delay in the time it takes 

for messages from sensor nodes to propagate across an Underwater Acoustic Sensor Network. The wait 
has been significantly cut down through the proposed method, as shown in Figure 11. 

 
Figure 11. Analysis of Propagation Delay and Energy Consumption 

Figure 11 illustrates the discernible correlation between the length of the propagation delay and the 
rise in the amount of energy. It has been noticed that the Angle Time of the Red Vulture Arrival Approach 
(ATRVA) performs better than its competitors when minimizing the propagation delay while 
simultaneously modifying the energy consumption limits. As a result, ATRVA offers superior 
performance over the other four algorithms—MPL, GA-SLMP, SLMP, and LSLS—regarding Variable 
propagation delay. This is the case even though all four algorithms deal with delay variance. 
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4.6. Transmission Delay 
During the data transmission process, the proposed Angle Time of the Red Vulture Arrival Approach 

(ATRVA) can be utilized in UASN to help limit the consumption of needless energy. The visual 
presentation of the transmission latency for different configurations of the nodes is shown in Figure 12. 

 
Figure 12. Performance of Transmission Delay and Energy Consumption. 

Figure 12 is a comparison table for energy usage with varied transmission delays for each of the three 
localization algorithms. If the criterion of ensuring no delay in the data transmission is met, ATRVA can 
lower the amount of energy consumed by each node to the least possible value. The diagram illustrates 
the transmission delay for a range of possible numbers of energy consumption limits, from 200 to 1060. 
ATRVA has a significantly shorter localization delay than MPL, GA-SLMP, SLMP, and LSLS. 

4.7. Execution Delay 
The time it takes for ATRVA and MPL to carry out their operations is reduced when more nodes are 

used. Compared to MPL, the results produced by existing methods such as GA-SLMP, SLMP, and LSLS 
are considered reasonably satisfactory. Compared to ATRVA, it makes substantial delays despite having 
a relatively small number of nodes as shown in Figure 13. 
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Figure 13. Analysis of Execution Delay. 

4.8. Cost 
The cost to locate the sensor des is referred to as this here. When calculating it, we consider 

communication overhead, power usage, and the time it takes to localize a sensor node, and so on. The 
visual presentation of the localization cost is shown in Figure 14. This depiction takes into account a 
range of different numbers of nodes. 

 
Figure 14. Comparison of performance of cost. 

Figure 14 illustrates that the proposed localization cost can range anywhere from 12 to 60 regarding 
the number of sensor nodes. As a consequence, the simulation results indisputably confirm that the 
proposed method excels in terms of cost. 

4.9. Energy Consumption 
In UASN, having accurate information about nodes' locations can help increase the effectiveness of 

the Network's use of energy. This article makes a trade-off between the amount of energy consumed and 
the number of sensor nodes shown in Figure 15 to improve the overall performance of ATRVA. 

 
Figure 15. Comparison analysis of Energy Consumption. 

The amount of energy that a network with a large number of sensors consumes is depicted in Figure 
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15. The energy consumption of the suggested ATRVA was higher than the existing approaches as MPL, 
GA-SLMP, SLMP, and LSLS algorithms based on the number of sensors. The number of nodes protocol 
increases, and the number of times the nodes are required to communicate with each other also increases. 
In addition, the required quantity of requests for distance measurements as frequently as required, 
increases the energy consumed. It demonstrates that the overall awake period of a node was decreased 
for the suggested approach when compared to existing algorithms such as Movement Prediction 
Localization (MPL), Genetic Algorithm -Scalable Localization with Mobility Prediction (GA-SLMP), 
Scalable Localization with Mobility Prediction (SLMP), and Localization Scheme for Large Scale 
(LSLS). 

5. Conclusions 
The angle Time of the Red Vulture Arrival Approach (ATRVA) is described in this study as a means 

of resolving the problems associated with the mobility of UASN and the high amount of energy required 
by these nodes. Whereas the node in question is a method of estimation founded on TDOA ranging, the 
Red Vulture Optimization Algorithm is strongly recommended for application. The window prediction 
method is incorporated into the Euclidean distances strategy to reduce estimation errors and delays 
significantly. The node mobility model is applied to forecast each time point of velocity and position. 
This model enables the calculation of the location of the node underwater, which is necessary for accurate 
forecasting. The node mobility model is applied to forecast each time point of velocity and position. This 
model enables the calculation of the location of the node underwater, which is necessary for accurate 
forecasting. It was proven that the proposed method has a superior delay, cost, energy consumption, and 
accuracy performance compared to other currently used techniques, such as Movement Prediction 
Localization (MPL), Genetic Algorithm -Scalable Localization with Mobility Prediction (GA-SLMP), 
Scalable Localization with Mobility Prediction (SLMP) and localization Scheme for Large Scale (LSLS). 
These comparisons were carried out after the proposed method was analyzed and compared to other 
currently used methods. 

6. Future Enhancement 
In subsequent studies, an expanded focus will be placed on developing an algorithm for tracking the 

mobile node, which is being monitored. The primary idea behind the proposed algorithm is to enhance 
the capabilities of UASNs in the areas of surveillance, defense, and control. In addition, our activities in 
the future will concentrate on improving the method's robustness by utilizing the data from each node 
and introducing a new optimization strategy focused on localization. 
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