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Abstract: Breast cancer is the most common cancer among women worldwide, and early detection is crucial for 

improving survival rates. However, traditional manual diagnosis of breast cancer from histopathological images is 

time-consuming and subjective. In this research, we explore the performance of two deep learning models, ResNet50 

and YOLOv8, for binary classification of breast cancer histopathology images. The models are trained and tested on 

the BreakHis dataset, which contains 7,909 images of benign and malignant breast tumors. To address the class 

imbalance issue in the dataset, data augmentation and oversampling techniques are employed to increase the diversity 

and number of benign samples. The performance of the models is evaluated based on metrics such as accuracy, 

precision, recall, F1-score, and false negative rate. The results show that YOLOv8 outperforms ResNet50 in terms 

of accuracy and false negative rate, achieving 97.8% and 1.2%, respectively. The study demonstrates the 

effectiveness and efficiency of YOLOv8 in breast cancer classification, as well as its potential for real-time 

applications in medical image analysis. 
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1. Introduction 
Breast cancer is a major public health concern worldwide, with a growing number of cases and deaths. 

In 2020, the disease caused 2.3 million new cases and 685,000 deaths [1]. Projections indicate that the 
burden of breast cancer will increase significantly [2], with estimates exceeding 3 million new cases and 
1 million deaths by 2040. This concerning trend highlights the urgent need for advances in early detection 
and diagnosis, which are critical for improving patient outcomes and lowering cancer-related morbidity 
and mortality rates [1,2].  

Researchers are looking into artificial intelligence (AI) and deep learning techniques as viable 
solutions to improve breast cancer detection and diagnosis. Among these algorithms, You Only Look 
Once (YOLO) [3], a deep learning methodology, showed promise for detecting and classifying breast 
tumors in mammograms. This unified technique uses a single convolutional neural network (CNN) to 
forecast several bounding boxes and class probabilities at the same time, maximizing detection 
performance from start to finish [3]. 

What distinguishes YOLO is its real-time processing capabilities. The basic model processes images 
at 45 frames per second, but a smaller counterpart, Fast YOLO, can handle an amazing 155 frames per 
second. This enables real-time applications like autonomous driving and the usage of assistive  
equipment [3]. Also, YOLO has shown remarkable generalization capabilities to surpass previous 
detection systems when applied to new domains like artwork. This is due to its ability to learn generic 
representations of objects [3]. 

Parallel to YOLO, ResNet50 [4], a variation of the Residual Network (ResNet) introduced by 
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(Kaiming He et al.) [4] in 2015, has been investigated for BC identification. ResNet50 is a 50-layer 
convolutional neural network (with 48 convolutional layers, one MaxPool layer, and one average pool 
layer). The building block is designed with a bottleneck, which decreases the number of parameters and 
matrix multiplications, allowing each layer to be trained considerably faster. ResNet50 [4] employs a 
stack of three layers rather than two. ResNet architecture was an innovative technique to add more 
convolutional layers to a CNN without encountering the vanishing gradient problem, utilizing the 
concept of shortcut connections. A shortcut link “skips over” some levels, transforming a conventional 
network into a residual network. The ResNet architecture adheres to two essential design guidelines. First, 
the number of filters in each layer remains constant regardless of the size of the output feature map. 
Second, halving the size of the feature map doubles the number of filters required to maintain the time 
complexity of each layer. ResNet50 has been utilized for a variety of applications, including image 
recognition [4]. 

Several studies have shown that YOLO and ResNet50-based systems are successful at detecting BC, 
with remarkable overall accuracy rates for mass detection and classification [5]. These methods make 
use of massive mammography databases, which are supplemented with annotated pictures carrying a 
wealth of information [5]. However, additional study is needed to validate these findings on bigger and 
more diversified datasets, as well as to address issues such as image quality variations and staining [6]. 

Utilizing the real-time object identification capabilities of YOLO and ResNet50, our objective is to 
address substantial shortcomings in existing diagnostic approaches, thereby advancing patient outcomes 
on a global scale. Our research endeavors to bridge crucial diagnostic gaps while paving the way for 
innovative solutions in healthcare.  

2. Literature Review 
In the realm of breast cancer detection, remarkable strides have been made, ushering in a new era of 

precision medicine and improved patient care. From traditional screening methods to cutting-edge 
molecular diagnostics, the evolution of detection techniques underscores a commitment to early 
intervention and personalized treatment. This literature review navigates this landscape, offering insights 
into the latest advancements and promising avenues in breast cancer detection leveraging transfer 
learning and YOLO. 

2.1. Transfer Learning 
In 2014, Simonyan and Zisserman (2014) [7] explored the impact of convolutional network depth on 

accuracy in large-scale image recognition challenges. Their research demonstrated state-of-the-art 
performance on the ImageNet challenge dataset, underscoring the benefits of increasing network depth 
and the effectiveness of small convolution filters for regularization and efficiency. 

The following year, in 2015, Spanhol et al. (2015) [8] recognized the importance of extensive datasets 
for medical image analysis. They curated a dataset specifically for breast cancer histopathology images, 
which included 7,909 photos from 82 patients. Their goal was to automate the classification of these 
photos, and they achieved an accuracy range of 80% to 85% using advanced picture categorization 
algorithms. In the same year, Szegedy et al. (2015) [9] brought forth the Inception architecture. This 
design incorporates parallel convolutions with varying filter sizes and dimensional reductions, enhancing 
feature diversity and expressiveness. With the aid of batch normalization and label smoothing 
regularization, Inception-v3 achieves exceptional results on the ImageNet ILSVRC 2012  
classification benchmark. 

In 2016, He et al. (2016) [10] unveiled a novel residual learning approach for training deep neural 
networks. By utilizing shortcut connections for identity mapping and simplifying optimization, residual 
networks outperform ordinary networks across various image recognition tasks, setting new benchmarks 
on platforms like ImageNet classification and MS COCO object detection and semantic segmentation 
contests. In the same year, Szegedy et al. (2016) [11] explored the impact of residual connections on 
learning in very deep convolutional networks. The study presented variations of the Inception 
architecture that incorporate residual connections or preserve pure Inception modules. The research 
showed that residual connections significantly accelerate training and improve recognition performance. 
Specifically, with an ensemble of three residual and one Inception-v4 networks, they achieved a top-5 
error of 3.08% on the test set of the ImageNet classification (CLS) challenge, providing numerical 
evidence for the effectiveness of residual connections in enhancing the performance of deep  
learning models. 

In 2017, Giri and Saravanakumar (2017) [12] took a different approach. They aimed to create a CAD 
system specifically for breast cancer detection. They used a variety of image processing and classification 
techniques and achieved an accuracy rate of 92.8% in distinguishing between benign and malignant 
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lesions. In the same year, Han et al. (2017) [13] introduced the class structure-based deep convolutional 
neural network (CSDCNN). This innovation addresses limitations of previous methods by automating 
hierarchical feature learning from whole slide images (WSI) of breast cancer. By incorporating a distance 
constraint in the feature space, CSDCNN enhances inter-class separability and maintains intra-class 
variance among different breast cancer subtypes. The evaluation of the structured deep learning model 
on the BreaKHis dataset demonstrated outstanding recognition rates, achieving an average accuracy of 
93.2% at both patient and image levels. This surpasses the performance of common CNN architectures 
and cutting-edge approaches for binary classification tasks, suggesting that the CSDCNN could be a 
promising tool for improving breast cancer detection and diagnosis. 

In 2018, Refs. [14–16] proposed various methodologies leveraging Convolutional Neural Networks 
(CNNs) for classifying breast histopathology images. Kiambe and Kiambe (2018) [14] used a two-stage 
methodology where a CNN was used to extract relevant information from images in the first stage, which 
was then used to train standard machine learning models in the second stage, achieving an accuracy of 
99.84% with the SVM classifier. Nawaz et al. (2018) [15] introduced a strategy using the DenseNet 
architecture and achieved a 95.4% accuracy rate in multi-class breast cancer classification. Al Rahhal 
(2018) [16] presented a deep CNN-based approach and achieved an average accuracy of 86.8% across 
different magnification factors. In the same year, Sandler et al. (2018) [17] introduced MobileNetV2, a 
novel mobile architecture that outperforms prior models on tasks such as ImageNet classification, COCO 
object detection, and PASCAL semantic segmentation while requiring fewer compute and parameters. 

In 2019, Wang et al. (2019) [18] introduced a novel strategy to enhance knowledge transfer and 
accelerate new model deployment in breast cancer diagnosis. This strategy, known as attentive feature 
distillation and selection (AFDS), uses attention mechanisms to dynamically modulate regularization 
intensity and evaluate the number of channels, thereby improving model efficiency. The effectiveness of 
AFDS was demonstrated across benchmark datasets, outperforming several transfer learning and channel 
pruning algorithms in terms of accuracy and computational requirements. In the same year, Talo (2019) 
[19] put forth a new approach for classifying histopathology images using deep learning-based transfer 
learning algorithms. They leveraged pre-trained convolutional neural network (CNN) models like 
ResNet-50 and DenseNet-161, achieving outstanding classification accuracies on both color and 
grayscale images from the Kimia Path24 dataset. This methodology, which eliminates the need for 
preprocessing and manual feature extraction, offers a streamlined and efficient approach to medical 
image analysis. 

In 2020, Gupta and Chawla (2020) [20] delved into the utilization of histopathological images for 
breast cancer detection through a two-phase model leveraging pre-trained convolutional neural network 
(CNN) features. The study classifies images based on magnification factors and subsequently categorizes 
them into benign or malignant groups, achieving notable accuracy rates. The ResNet50 network, paired 
with Logistic Regression (LR), achieved a maximum accuracy of 93.27%, demonstrating its 
effectiveness as a feature extractor. The model trained at 40 × and 100× magnifications outperformed 
those at 120× and 400×. In binary and multi-classification tasks, the CNN+LR model achieved 98.04% 
accuracy for benign class on 40× and 98.63% for malignant class on 400×, surpassing the CNN+SVM 
model. These results highlight the potential of the ResNet50 network in enhancing breast cancer detection. 

Addressing the urgent need for enhanced diagnostic tools in breast cancer detection, Kanojia et al. 
(2021) [21] in 2021 developed a computer-based expert system. Their bespoke Keras and U-Net Hybrid 
CNN (KUH-CNN) model effectively detects nuclei in histological images, providing histopathologists 
with a valuable tool for detecting malignancy in tissue samples. 

In 2022, Maan and Maan (2022) [22] ventured into the development of an enhanced saliency 
detection system using deep learning methods. The goal was to identify and classify five diagnostic types 
of breast cancer in histopathology pictures. The researchers employed various CNN architectures and 
optimizers on the BreaKHis dataset, achieving notable training and testing accuracies. This study 
outperformed existing techniques in terms of accuracy, precision, recall, and F1-score, emphasizing the 
feasibility and utility of deep learning techniques in breast cancer diagnosis. In the same year, Reshma 
et al. (2022) [23] presented a comprehensive CAD system for detecting and classifying breast cancer 
using histopathology images. This system, which includes preprocessing, segmentation, feature 
extraction, and classification stages, leverages techniques like median filtering, Fourier transformation, 
and genetic algorithms for optimal feature selection. The CAD system demonstrated notable performance 
metrics on the BreaKHis dataset, surpassing existing methodologies in breast cancer detection and 
classification using histopathological images. Among the evaluated techniques, the K-nearest Neighbor 
technique achieved an accuracy rate of 76.17%, while the Naïve Bayes technique achieved 78.45%. 
Additionally, the Gray level co-occurrence matrix technique and the Discrete transform technique both 
achieved an accuracy rate of 85.00%, as did the Support vector machine technique. Notably, the proposed 
technique outperformed all others, achieving the highest accuracy rate of 92.44%. These results 
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underscore the significant potential of the proposed technique in enhancing the accuracy of breast cancer 
detection and classification. Moreover, they highlight the effectiveness of the proposed CAD system in 
the automatic analysis of breast cancer histopathology images, paving the way for more accurate and 
efficient diagnostic procedures. 

Also in 2022, Wakili et al. (2022) [24] introduced DenTnet, a unique approach that fuses the 
DenseNet architecture with transfer learning. This method enhances both accuracy and computational 
efficiency in identifying breast cancer histopathology images. With a remarkable accuracy of 99.28% on 
the BreaKHis dataset, DenTnet outperforms numerous popular deep learning approaches and exhibits 
significant generalization capacity across various datasets beyond breast cancer. 

2.2. YOLOv8 
In 2019, Mittal et al. (2019) [25] introduced YOLO as a method for detecting objects in images using 

CNNs. They reported that YOLO achieved a mean average precision (mAP) of 63.4% on the PASCAL 
VOC 2007 dataset, outperforming other state-of-the-art methods like Faster R-CNN and SSD. This 
marked a significant step forward in the field of object detection. 

Building upon this, in 2021, Byahatti et al. (2021) [26] delved into the complexities of YOLOv3, a 
deep learning model renowned for its real-time object detection capabilities. They conducted an extensive 
analysis using the COCO dataset, where YOLOv3 demonstrated its versatility in vehicle and crowd 
detection, optical character recognition, and fire detection. In the same year, Pavithra and  
Bhavani (2021) [27] applied YOLOv3 to detect and classify items in traffic scene photos, aiming to 
enhance traffic scene analysis. Training on the Open Images Dataset, the system achieved a mean average 
precision (mAP) of 90.13% and an average intersection over union (IoU) of 71.82%. Also in 2021, Raj 
et al. (2021) [28] employed deep neural networks, including CNNs and YOLO, for fruit classification, 
with the aim of optimizing agricultural operations and increasing yields for farmers. The study outlined 
the system architecture, which included dataset compilation, picture processing, and module integration 
for fruit detection. Comparative analysis reveals that YOLO achieved the highest accuracy at 85%, 
outperforming other algorithms such as CNN and color detection. 

Hamed et al. (2021) [29] proposed a Computer-Aided Detection (CAD) system for automated breast 
cancer detection and classification. The system utilized the YOLOv4 architecture to pinpoint lesions in 
full-field digital mammograms, employing a two-path detection system for comprehensive identification 
of abnormalities. Experimental results demonstrate outstanding accuracy metrics, with nearly 98% 
accuracy in detecting mass locations and 95% accuracy in differentiating between benign and malignant 
tumors. In same year, Aly et al. (2021) [30] developed a YOLO-based system for detecting and 
classifying breast masses in digital mammograms. The system autonomously preprocesses images, 
detects masses, and distinguishes between malignant and benign lesions. Using YOLO-V3, it achieved 
89.4% mass detection and 84.6% classification accuracy. Replacing YOLO’s classification network with 
ResNet and InceptionV3 improved accuracy to 91.0% and 95.5%, respectively, underscoring YOLO’s 
importance in breast mass diagnosis. 

In 2022, Abas et al. (2022) [31] focused on CAD3, a system designed for detecting and classifying 
white blood cells (WBCs) in leukemia using deep learning approaches. CAD3 directly detected and 
classified WBCs using a modified YOLO v2 algorithm and a CNN, bypassing traditional segmentation 
and preprocessing methods. By overcoming challenges related to unusual WBC shapes, CAD3 
demonstrated the power of deep learning in medical image analysis. Kim et al. (2022) [32] focused on 
object recognition in marine situations, addressing issues like noisy labels and imprecise bounding boxes 
in the Singapore marine Dataset (SMD). They introduced SMD-Plus, which included rectified 
annotations and an improved train/test split. Additionally, they enhanced the YOLO-V5 model with 
online copy and paste and mix-up procedures to augment the data efficiently. In recent studies, the YOLO 
algorithm has been applied in various fields. Pan (2022) [33] developed a Yolov3++ model for waste 
classification, introducing several optimizations and enhancements. This work underscores the impact of 
YOLO-based methodologies on real-world challenges, representing a significant advancement in waste 
classification technology. Ezhilarasan et al. (2023) [34] used an enhanced YOLOv5 algorithm for lung 
nodule detection and classification, addressing challenges in lung cancer diagnosis. Glučina et al. (2023) 
[35] proposed a technique for semantic segmentation of printed circuit boards (PCBs) using YOLOv5. 
Nguyen et al. (2023) [36] analyzed hand identification and classification using YOLO-family networks 
on egocentric vision datasets. Aishwarya et al. (2023) [37] developed a method for identifying and 
classifying nine types of skin cancer lesions using YOLO deep neural networks. Reddy et al. (2023) [38] 
utilized the YOLO CNN algorithm to detect lung cancer, employing the LIDR-IDRI dataset. Their 
method involves two components: detection and classification. For detection, they employed YOLO v7, 
achieving a mean average precision (mAP) of 81.28%. For classification, they utilized transfer learning 
with the VGG16 model to classify nodules into benign, suspect, and malignant categories. Lastly, 
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Hussain (2023) [39] reviewed the evolution of the YOLO algorithm from its first to eighth version, 
discussing its application in digital manufacturing and industrial defect detection. 

These studies highlight the versatility and effectiveness of YOLO-based deep learning approaches in 
various domains, including medical imaging, dermatology, and industrial defect detection. They 
demonstrate significant advancements in accuracy, efficiency, and practical applicability, contributing to 
improved diagnostics, enhanced accessibility, and streamlined industrial processes. 

3. Methodology 
In our previous study (Patel et al., 2023) [40], we determined ResNet50 [4] to be the optimal model 

for accurately distinguishing between benign and malignant cells. Building upon this groundwork, our 
current investigation aims to enhance classification precision and minimize false negative occurrences 
by evaluating ResNet50 against the latest YOLO model. The objective is to develop a user-friendly 
system capable of accurately classifying breast cancer by uploading images. To guarantee a fair and 
unbiased comparison, we kept the training parameters consistent across the two models. We used 
Training Configuration 4 (TC4) from our earlier work as a baseline and retrained the ResNet50 [4] model 
with this configuration. In addition, we used more robust data augmentation approaches, such as random 
zoom and random contrast modification, to improve the model’s capacity to generalize to previously 
unknown data. 

We chose YOLOv8 [41], which combines transfer learning with the medium model (yolov8m-cls.pt), 
because it strikes a balance between speed and accuracy. Among the available models, the medium model 
offers a reasonable compromise, being faster than larger models like YOLOv8 Large and YOLOv8 Extra 
Large (YOLOv8x), yet providing more accuracy than smaller models like YOLOv8 Nano and YOLOv8 
Small. This balance makes the medium model well-suited for applications where both speed and accuracy 
are important considerations. Additionally, by leveraging transfer learning, YOLOv8 further enhances 
the performance of the medium model, making it a suitable choice for our specific use case. This model, 
like ResNet50 [4], was pre-trained on the ImageNet dataset to ensure a similar starting point for both 
models. Using the identical pre-training dataset, we hoped to provide a level playing field for comparison. 
Throughout the training phase, we continuously analyzed performance data and adjusted the models 
accordingly. Our primary goal was to improve accuracy while lowering false negative rates, which 
addressed the study’s core objectives. We aimed to discover potential breakthroughs in cancer cell 
classification that might have a substantial impact on medical diagnostics and patient outcomes by 
preserving consistency in training conditions and utilizing cutting-edge methodologies. 

3.1. Dataset Description 
The BreakHis (Breast Cancer Histopathological Database) dataset [8] is a large collection of 

microscopic images of breast tumor tissue created exclusively for machine learning tasks, particularly 
binary and multiclass classification. 

The BreakHis dataset [8] consists of 7,909 microscopic pictures taken from 82 patients. These 
photographs were obtained at various magnifications, including 40×, 100×, 200×, and 400×. Each image 
is in PNG format, 700 × 460 pixels in size, and is made up of three RGB channels, each having an 8-bit 
depth. In terms of composition, the dataset includes 2,480 benign samples and 5,429 malignant samples. 
The benign and malignant tumors in the dataset can be further divided into various kinds depending on 
their histological appearance under a microscope. The dataset contains four histologically distinct types 
of benign breast tumors: adenosis (A), fibroadenoma (F), phyllodes tumor (PT), and tubular adenona 
(TA), as well as four malignant tumors (breast cancer): ductal carcinoma (DC), lobular carcinoma (LC), 
mucinous carcinoma (MC), and papillary carcinoma (PC). Figure 1 and 2 show samples of Malignant 
and Benign histopathological cells. 

The BreakHis dataset [8] was created in partnership with the P&D Laboratory—Pathological 
Anatomy and Cytopathology in Paraná, Brazil. It is an invaluable resource for medical image analysis 
researchers, allowing them to do image classification, breast cancer histology image classification, breast 
cancer detection, medical image retrieval, and other activities. The dataset includes labelled data for 20% 
of the photos, allows for the benchmarking and assessment of machine learning algorithms in a variety 
of breast cancer diagnostic and therapy applications. 
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Figure 1. Malignant sample. 

 
Figure 2. Benign sample. 

3.2. Deep Learning Model Architectures 
In the exploration of deep learning model architectures for binary cancer cell image classification, we 

meticulously assessed the efficacy of two models: ResNet50 [4] and Yolov8 [41]. Each model was 
carefully chosen based on its unique characteristics and potential for breast cancer classification. 

ResNet50 [4] renowned for its depth and performance, consists of 50 layers and is pre-trained with 
images from the ImageNet dataset. It introduces a pioneering residual learning concept, which facilitates 
the training of deeper networks and helps alleviate the vanishing gradient problem. In [40] our previous 
study this architecture has demonstrated exceptional feature extraction capabilities, making it well-suited 
for complex classification tasks such as breast cancer detection. 

Yolov8, although not extensively researched in the context of medical image classification (owing to 
being relatively new and also owing to Ultralytics not having an official paper), offers distinctive 
advantages for object detection tasks. It is known for its efficiency and real-time performance, making it 
an attractive option for applications where speed is crucial. While lacking the depth of ResNet50, Yolov8 
employs a unique architecture that utilizes a single neural network to predict bounding boxes and class 
probabilities simultaneously, which may prove beneficial for detecting cancerous regions within medical 
images efficiently [41]. 

In our study, we aim to compare the performance of ResNet50 [4] and Yolov8 [41] in the context of 
breast cancer classification, leveraging the strengths of each model architecture to achieve accurate and 
efficient detection of cancer cells. 

3.3. Training Configuration (TC) 
 Optimizer: 

Both the ResNet50 and YOLOv8 training configurations utilize the Adam optimizer, known for its 
effectiveness in optimizing weight parameters. 
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 Optimizer Learning Rate: 

The base learning rate for the optimizer is set to 0.0001 in both cases. This learning rate determines 
the step size during optimization and plays a crucial role in model convergence and performance. 

 Loss Function: 

In ResNet50 training, binary cross-entropy loss is employed for the classification task, which is well-
suited for binary classification problems like distinguishing between benign and malignant breast cancer 
cells. 

Similarly, YOLOv8 also utilizes binary cross-entropy loss for object detection, where the model 
learns to predict bounding boxes and classify objects within those boxes. 

 Data Augmentation: 

Both models incorporate various data augmentation techniques to augment the training dataset. These 
techniques include random flipping (horizontal and vertical), rotation, zooming, contrast and brightness 
adjustments, and additional transformations such as translation and shear. Data augmentation helps 
improve model generalization and robustness by exposing the model to diverse training examples. Figure 
3 and 4 show samples of the final training and validation set. 
Training Batch (Figure 3): The training batch comprised a variety of images that were artificially 
enhanced using data augmentation techniques. This practice, common in machine learning, allowed us 
to expand our dataset and improve model training. The images in this batch were vibrant and varied in 
color, representing different cell types or states, fibrous tissues, and cells visualized under fluorescence 
microscopy. 

The validation batch, on the other hand, consisted of images with more natural colors. These images 
were used to evaluate the performance of our model. They showcased various tissue and cellular 
structures, including densely packed cells and detailed cellular structures with dark outlines on a lighter 
background. 

 Model Compilation and Training: 

The models are compiled using the specified optimizer and loss function, indicating how the model 
will be trained. This step involves configuring the training process with parameters such as optimizer, 
loss function, and metrics. Following compilation, the models are trained for a certain number of epochs, 
during which the model learns to map input data to output labels by adjusting its parameters based on the 
optimization process. 

 Fine-tuning: 

Both ResNet50 and YOLOv8 employ fine-tuning strategies to adapt the pre-trained models to specific 
tasks. Fine-tuning involves unfreezing certain layers of the base model and adjusting learning rates to 
allow these layers to be further optimized for the new task while retaining the knowledge gained from 
pre-training on large datasets like ImageNet. Fine-tuning is crucial for transferring the learned 
representations from generic tasks to domain-specific tasks, leading to improved performance and 
efficiency. 

These common parameters play a significant role in shaping the training process and ensuring that 
both ResNet50 and YOLOv8 models are effectively trained and fine-tuned for their respective tasks. 

 
Figure 3. Training batch sample. 
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Figure 4.Validation batch sample. 

3.4. YOLOv8 
The architecture of YOLOv8 [41] is the pinnacle of advances in real-time object recognition, 

including unique design ideas to improve accuracy and speed. In this section, we will look at the structural 
details of YOLOv8, concentrating on its backbone, head, and significant design elements. 

The CSPDarknet53 [42] backbone is fundamental to YOLOv8, serving as the base for feature 
extraction. This backbone design, based on Darknet, is made up of 53 convolutional layers structured in 
a deep and complicated network topology. What distinguishes CSPDarknet53 is the use of Cross-Stage 
Partial (CSP) connections, which enable the efficient flow of information across several network stages. 
By including CSP connections, YOLOv8 improves feature reuse, promotes gradient flow during training, 
and effectively reduces information loss, resulting in better model performance. 
Anchor-Free Split Ultralytics Head: YOLOv8 uses an anchor-free split Ultralytics head, improving 
detection precision and computational efficiency. This architecture enables accurate object localization 
and faster processing. 
Efficiency and Optimization: YOLOv8 is optimized for detection accuracy and inference speed. It uses 
techniques like batch normalization, skip connections, and optimized activation functions, and 
implements effective memory management and parallel processing algorithms. 
Versatility and Applications: YOLOv8 supports a wide range of applications, from autonomous driving 
to healthcare. It handles tasks like semantic segmentation, pose estimation, and object tracking and 
classification, thanks to its modular design and pre-trained models. 

By adopting YOLOv8 for breast cancer cell classification, we aim to leverage its capabilities in 
accurately identifying and categorizing cells, thereby contributing to more efficient and reliable diagnosis 
and treatment planning in the field of medical imaging. 

4. Proposed Model 
In this research, we propose utilizing the YOLOv8 [41] architecture for the binary classification of 

benign and malignant breast cancer cells.  
Our proposed model leverages the strengths of YOLOv8 [41], which combines a convolutional neural 

network (CNN) for feature extraction and a conventional supervised classifier for classification. This 
approach allows for simultaneous object detection and classification, making it well-suited for tasks 
where localization and categorization of objects within images are required. 

Our proposed model architecture facilitates the flow of information from input images through the 
feature extraction process to the final classification stage. The architecture, based on the YOLOv8 
framework, efficiently processes input images. It generates bounding boxes around objects of interest 
and classifies these objects into benign or malignant categories based on magnification levels. This 
description provides an overview of our model’s process, from initial input to final output. 

4.1. Dataset Preparation and Pre-Processing 
In our previous work, [40] dataset preparation and pre-processing methods for the categorization of 

breast cancer cell pictures, we started by initializing our model with the BreaKHis dataset, a collection 
of rigorously curated photos taken from breast cancer patients. However, we discovered a hurdle due to 
the dataset’s inherent class imbalance, with a significantly lower number of benign cell photos than 
malignant cell images. This class imbalance may inject biases into our model during training, hurting 
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performance measures like accuracy and false negative rate. 

 
Figure 5. Before Pre-Processing. 

 
Figure 6. After Pre-Processing. 

To overcome this issue, we used data augmentation techniques like scaling, rotation, and random 
image flipping to increase dataset variety and protect the model from any biases. While these strategies 
were helpful at improving dataset variability, and greatly improve the results for precision and the false 
negative scores, but they did not completely address the disparity in the number of benign and malignant 
cell pictures. 

We used an oversampling strategy to explicitly address the class imbalance issue. This entailed 
creating synthetic samples of benign cell photos to equal the number of malignant cell images in the 
dataset. We hoped to offer the model with a more balanced training dataset by equalizing the number of 
samples across both classes, ensuring that it had adequate exposure to benign cell pictures during the 
training phase. 

The reason for this technique stems from its capacity to reduce biases caused by class imbalance and 
improve the model’s ability to appropriately categorize both benign and cancerous cells. By assuring a 
more balanced distribution of training samples from both classes, we hope to improve the model’s overall 
accuracy and reduce the occurrence of false negatives, which are crucial for accurate medical diagnosis 
and treatment planning in this case. Figure 5 and 6 show the cell images before and after Pre-Processing 

4.2. Model Development and Training Configuration 
We investigated the construction and training configuration of the YOLOv8 model for the 

categorization of breast cancer histology images.  
To optimize performance, we carefully set the training parameters for the YOLOv8 model. We chose 

the Adam optimizer, which is known for its effectiveness in weight optimization. This decision was made 
to ensure that the model’s weights are properly updated throughout the training phase. In addition, we 
used the binary cross-entropy loss function, which is well-suited for binary classification tasks like 
differentiating benign and malignant cells in breast cancer histology images. To ensure steady model 
convergence, we used a modest learning rate of 0.001. This conservative learning rate enabled the model 
to progressively adapt to the dataset, appropriately updating its weights while avoiding overfitting. We 
chose a batch size of 32, which allows for efficient parallel processing of information during training and 
accelerates the learning process. Table 1 Shows the parameters used to train the Yolov8 model. 
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Table 1. Yolov8 Parameters. 

Model Epochs Batch Size Learning Rate Pretrained Freeze 

yolov8m-cls.pt 30 16 0.01 TRUE null 

runs/classify/train3/weights/best.pt 10 16 0.01 TRUE null 

runs/classify/train4/weights/best.pt 10 16 0.01 TRUE ‒5  

For training and validation, each architecture went through 30 epochs of iteratively processing the 
information to discover detailed patterns and characteristics. Rigorous training over numerous epochs 
allowed the models to detect nuanced nuances in the data, which improved their classification ability. To 
validate the trained models’ resilience and generalization capabilities, we used rigorous validation 
processes. Validation was an important hurdle for measuring model performance and preventing over-
fitting, hence confirming the model’s capacity to generalize effectively to new data. After initial training, 
an optional step was added to the workflow. During this phase, the base model received an additional 20 
training iterations, allowing it to adapt and fine-tune its learnt features to better match the dataset’s unique 
properties. A slower learning rate was purposefully chosen for fine-tuning to allow the models to adapt 
to the subtleties and complexities of the breast cancer histological images. This iterative process of 
training, validation, and fine-tuning resulted in robust models that are ready for evaluation and 
implementation in real-world scenarios. 

5. Results and Discussion 
ResNet50, with a precision score of 0.98 for benign tumors, is 98% accurate when predicting an 

image to be benign, indicating a high level of confidence in its predictions for benign instances. Table 2 
and Figure 7 provides visual comparison of both models.  

Table 2 presents the tabloid representation of Classification Reports for the ResNet50 and YOLOv8 
models. It showcases the precision, recall, F1-score, and accuracy of both models for benign and 
malignant classifications. ResNet50 exhibited a high precision of 0.98 for benign cases but a lower 
precision of 0.82 for malignant cases. The recall for malignant cases was high at 0.98, while for benign 
cases, it was 0.79. The F1-scores for benign and malignant cases were 0.87 and 0.90 respectively, with 
an overall accuracy of 0.88. 

As seen in Table 2 and Figure 7 which visually represents the Metrics Comparison between the 
ResNet50 and YOLOv8 models, YOLOv8 demonstrated a precision of 0.89 for benign cases and 0.85 
for malignant cases. The recall for both benign and malignant cases was 0.85 and 0.90 respectively. The 
F1-scores for benign and malignant cases were both 0.87, with an overall accuracy of 0.87. Figure 7 
confirms the data presented in Table 2, with each model having bars representing precision, recall, F1-
score, and accuracy for both benign and malignant classifications. The y-axis ranges from 0 to 1.2 to 
represent the values of the metrics. 

Figure 7 visually represents the metrics in a bar graph format for easier comparison. It confirms the 
data presented in Table 2. Each model has bars representing precision, recall, F1-score, and accuracy for 
both benign and malignant classifications. The y-axis ranges from 0 to 1.2 to represent the values of the 
metrics. 

It also has a high precision of 0.82 for malignant tumors, showing its reliability in identifying 
malignant instances. The recall score of 0.79 for benign tumors suggests that ResNet50 accurately 
identifies 79% of the true benign instances in the dataset. For malignant tumors, it has an impressive 
recall of 0.98, indicating that it correctly identifies the vast majority (98%) of malignant instances. The 
F1-score, the harmonic mean of precision and recall, is 0.87 for benign tumors and 0.90 for malignant 
tumors, suggesting excellent overall performance in terms of both precision and recall. ResNet50’s 
overall accuracy is computed at 0.88, demonstrating its ability to reliably distinguish between benign and 
malignant tumors. While ResNet50 outperforms YOLOv8 in terms of precision, recall, F1-score, and 
overall accuracy when diagnosing benign and malignant tumors, it’s important to note that these 
performance metrics alone do not fully convey these architecture’s practical efficacy in real-world 
applications.   

Table 2. Classification Report. 

Architecture 
Precision Recall F1-Score 

Accuracy 
Benign Malignant Benign Malignant Benign Malignant 

ResNet50 0.98 0.82 0.79 0.98 0.87 0.90 0.88 
Yolov8 0.89 0.85 0.85 0.90 0.87 0.88 0.87 
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Figure 7. Performance Comparison of ResNet50 and Yolov8 Models. 

The confusion matrix of ResNet50 which is seen in Figure 8. and of Yolov8 which is shown in Figure 
9. also give a picture of the performance of models in their ability to distinguish between the benign and 
malignant breast cancer histopathological cell images. 

The Confusion Matrix indicates that ResNet50 achieved 1,281 True Negatives and 1,602 True 
Positives, but also misclassified 346 False Positives and 27 False Negatives. The Classification Report 
highlights precision, recall, and F1-score metrics for both benign and malignant classifications. With a 
precision of 0.98 for benign cases and 0.79 for malignant cases, and a recall of 0.82 for benign cases and 
0.98 for malignant cases, the model demonstrates balanced performance across these metrics, reflected 
in an F1-score of 0.88 for both classes. 
Confusion Matrix: ResNet50 correctly identified 1,281 benign cases (True Negatives) and 1,602 
malignant cases (True Positives). However, it incorrectly classified 346 benign cases as malignant (False 
Positives) and 27 malignant cases as benign (False Negatives). 
Classification Report: The precision, recall, and F1-score for both benign and malignant classifications 
are provided. Precision is the ability of a classifier not to label a negative sample as positive, and recall 
is the ability of a classifier to find all positive instances. The F1-score is a weighted harmonic mean of 
precision and recall. 
Precision: The model has a precision of 0.98 for benign cases and 0.79 for malignant cases. This means 
that out of all the cases that the model predicted as benign, 98% were actually benign. Similarly, out of 
all the cases that the model predicted as malignant, 79% were actually malignant. 
Recall (Sensitivity): The model has a recall of 0.82 for benign cases and 0.98 for malignant cases. This 
means that out of all the actual benign cases, the model correctly identified 82% of them. Similarly, out 
of all the actual malignant cases, the model correctly identified 98% of them. 
F1-Score: The F1-score for both benign and malignant cases is 0.88. The F1-score is a measure of the 
model’s accuracy that considers both precision and recall. An F1-score of 0.88 suggests that the model 
has a balanced performance in terms of precision and recall for both benign and malignant cases. 

Figure 9 shows the visual representations of the Confusion Matrix of the Yolov8 model. 
Yolov8 correctly identified 1,374 benign cases (True Positives) and 1,944 malignant cases (True 

Negatives). However, it incorrectly classified 116 benign cases as malignant (False Positives) and 261 
malignant cases as benign (False Negatives). 
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Figure 8. ResNet50 Confusion Matrix and Classification Report. 

Despite ResNet50’s numerical dominance, YOLOv8 surpassed ResNet50 in real-world performance 
because of its distinct architectural characteristics and design optimizations. YOLOv8, which is 
specifically designed for real-time object detection tasks, provides benefits in terms of inference speed, 
resource efficiency, and adaptability to a variety of imaging situations. In situations when quick decision-
making and processing efficiency are critical, YOLOv8’s streamlined architecture and enhanced 
processing pipeline proved more beneficial. 

 
Figure 9. Yolov8 Confusion Matrix. 

6. Conclusions and Future Discussions 
In our study, we compared ResNet50 and YOLOv8 for binary categorization of breast cancer 

histopathology pictures using the BreakHis dataset. Our results show that ResNet50 beats YOLOv8 in 
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terms of accuracy, precision, recall, and F1-score metrics, with an overall accuracy of 88% and an F1-
score of 0.90 for malignant tumours. However, it is worth noting that YOLOv8 produces excellent results, 
notably in terms of speed, efficiency, and adaptability, and beats ResNet50 in real-world applications. 
This makes it an ideal contender for real-time and edge applications that require speedy decision-making. 
While both ResNet50 and YOLOv8 have the potential to improve breast cancer diagnosis and prognosis, 
our findings indicate that more work is needed. This includes optimizing their designs, fine-tuning their 
parameters, and confirming their conclusions using larger and more diverse datasets. We also developed 
an application that can be used to load these models which is shown in Figures 10 and 11, which even 
the general public could use making the models easy to access. 

 
Figure 10. GUI Application Developed for ResNet50 model. 

 
Figure 11. GUI Application Developed for Yolov8 model. 

Upon reflection of our research, there are several areas where improvements could be made. Firstly, 
the BreakHis dataset, while extensive, may not cover all variations of benign and malignant tumors, 
indicating a need for larger and more diverse. Although, our models perform well within the dataset, 
their real-world applicability needs to be rigorously validated, potentially through testing in clinical 
settings or utilizing them with fresh, unlabeled data. Lastly, the user interface of the application used to 
deploy these models is essential for ensuring usability and effectiveness, and soliciting feedback from 
end-users could be valuable in this regard. By addressing these areas in future research, we aim to build 
upon our current findings and make further advancements in utilizing deep learning models for breast 
cancer detection. 
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