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Abstract: The escalating healthcare costs in contemporary society have raised significant concerns. Identifying 

medical risks efficiently is crucial for reducing treatment expenses and improving overall health outcomes. However, 

the current disease risk assessment process involves multiple tests and requires medical professionals' expertise, 

leading to time-consuming and expensive procedures. In response to these challenges, the current role of machine 

learning in healthcare holds promise by offering efficient solutions for disease risk assessment, potentially 

streamlining processes, and contributing to cost reduction while improving health outcomes. However, the 

classification of medical diseases using machine learning (ML) algorithms presents challenges due to the presence 

of incomplete, uncertain, and inaccurate data. This research paper conducts a comprehensive survey of prior studies 

in the application of ML techniques for disease diagnosis, emphasizing the need for a system capable of integrating 

both linguistic and numeric inputs to enhance the diagnostic process's robustness. The study aims to surpass merely 

improving clinical outcomes by focusing on enhancing diagnostic accuracy, optimizing patient care, and resource 

utilization. It further explores machine learning (ML) techniques for disease diagnosis, introducing a hybrid ML-

fuzzy logic (FL) model evaluated on five healthcare datasets related to diabetes, heart stroke, heart failure, and body 

fat predictions. The empirical findings and evaluations are conducted using the Python 3.8.3 environment with 

Jupyter Notebook. Seven existing ML algorithms, alongside the proposed hybrid Fuzzy-PCA-SVM model, are 

employed on all datasets. To evaluate the model's effectiveness, various performance standards, including accuracy, 

precision, F1-score, and recall, have been considered. The results demonstrate that by leveraging the benefits of both 

SVM and FL systems, the suggested hybrid model outperforms other ML models. The study not only underscores 

the significance of integrating linguistic and numeric inputs in disease diagnosis but also envisions future research 

focused on real-world datasets and improved feature selection techniques for continued advancements in  

healthcare analytics. 

Keywords: artificial intelligence (AI); fuzzy logic (FL); machine learning (ML); support vector machines (SVM); 

random forest (RF); decision tree (DT); Naïve Bayes (NB) 

 

1. Introduction 
In the landscape of digital healthcare, a multitude of opportunities arises for continuous data tracking, 

enhanced clinical outcomes, and the reduction of human errors. Artificial Intelligence (AI) techniques, 
ranging from ML to deep learning, play pivotal roles in various well-being-related domains. These 
include the treatment of diverse illnesses, the development of advanced clinical systems, and the 
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management of patient data and records [1–4]. Notably, ML and deep learning applications prove 
instrumental in identifying and studying illnesses that pose challenges for conventional diagnostic 
methods. In [5], a comprehensive analysis employing AI methodologies for diagnosing a spectrum of 
challenging illnesses, including diabetes, chronic heart disease, TB, stroke, hypertension, skin, and liver 
diseases has been carried out. 

Within healthcare decision-making, information often exhibits uncertainties, presenting challenges 
for technology producers and researchers. Traditional logic tends to categorize information into binary 
outcomes, yet FL provides a nuanced framework that captures the “grey areas” in between [6]. While 
integrating ML techniques with FL has shown promise in healthcare classification tasks, Refs. [7,8] the 
development of high-performance training methods remains a challenge.  

This study aims to address this gap by proposing a model capable of handling both linguistic and 
numeric inputs, catering to non-specialists in healthcare. The primary objectives are to enhance diagnoses, 
improve patient care, and optimize resource utilization. Given the advancements in AI and ML, 
particularly in disease prevention, personalized medicine, and digital diagnosis, there is a pressing need 
for high-quality ML and AI decision support systems to effectively address healthcare challenges and 
elevate patient outcomes. 

This research paper explores the application of FL systems in healthcare, highlighting their prowess 
in manipulating and representing uncertain information. By leveraging FL, medical professionals gain a 
valuable tool to navigate linguistic nuances and mitigate the loss of clarity in decision-making processes. 
The effectiveness of FL technologies, recognized across the medical field, demonstrates their capability 
to address the inherent fuzziness associated with healthcare scenarios. 

The amalgamation of FL with ML techniques enables the synergistic leveraging of their strengths. 
ML algorithms, adept at handling vast amounts of data and uncovering patterns, enhance the usefulness 
and efficiency of the FL framework. This paper underscores the significance of integrating FL with ML, 
paving the way for the development of advanced methodologies that provide essential support to medical 
professionals, ultimately leading to improved patient care outcomes. The subsequent sections provide a 
detailed discussion of ML, FL, healthcare, and the pivotal role played by the integration of ML and FL 
in healthcare processes. 

1.1. Machine Learning (ML) and Its Applications in Healthcare 
ML is a subset of AI, that encompasses the process of analyzing data to enhance performance in 

various tasks. ML is a subset of artificial intelligence (AI) that involves the development of algorithms 
and statistical models to enable computer systems to learn and improve their performance without explicit 
programming. ML algorithms analyze data, recognize patterns, and make informed decisions, ultimately 
enhancing their ability to handle complex tasks [9]. The integration of computational statistics and 
statistical learning enhances the capabilities of ML, with contributions from mathematical optimization 
tools, theoretical frameworks, and practical applications. Data scientists employ exploratory data analysis 
(EDA) and data visualization techniques for effective dataset summarization and analysis.  

In emulation of the intricate workings of the human brain, certain ML methodologies employ neural 
networks and data-driven models to mirror cognitive functions. Renowned in business realms as 
predictive analytics, ML adeptly leverages historical data to make precise predictions [10]. This notable 
advancement extends to the healthcare sector, where ML utilization has experienced significant growth. 
Through the training of algorithms on extensive healthcare datasets, ML holds the promise of providing 
accurate predictions and valuable insights, thereby enhancing decision-making processes within the 
healthcare domain. 

ML in healthcare offers diverse applications: 

 Disease Diagnosis and Prediction: ML models analyze medical data for diseases like cancer and 
diabetes, enabling early detection and personalized treatment plans [11]. 

 Drug Discovery and Development: ML accelerates drug discovery by predicting drug 
candidates and optimizing clinical trials. 

 Personalized Medicine: ML tailors treatments based on individual characteristics, enhancing 
efficacy and minimizing adverse effects. 

 Healthcare Management: ML optimizes hospital operations, predicts patient admission rates, 
and aids in managing healthcare supply chains. 

 Image and Speech Recognition: ML interprets medical images for accurate diagnosis and 
transcribes medical notes through speech recognition. 

 Remote Patient Monitoring: ML supports real-time health insights through analyzing data from 
wearable devices, aiding in early intervention. 



 Fraud Detection and Security: ML enhances healthcare fraud detection and utilizes biometric 
authentication for data security. 

 Natural Language Processing (NLP): NLP improves electronic health record management and 
facilitates information retrieval in healthcare. 

This research paper delves into the Proliferating role of ML in healthcare, emphasizing its ability to 
enhance predictive analytics and support informed decision-making. By harnessing ML's capabilities, 
healthcare practitioners can extract valuable insights from historical data, leading to more precise 
diagnoses, improved treatment planning, and enhanced patient care [6]. The fundamental principles of 
ML methodologies and their applications in healthcare are elucidated in Table 1. 

1.2. Fuzzy Logic in Healthcare Decision-Making 
Fuzzy logic (FL), introduced by Lotfi Zadeh in 1965, offers a distinctive mathematical approach that 

accommodates intermediate values between true and false, effectively handling imprecise or uncertain 
data in decision-making processes. Unlike traditional binary logic that relies on rigid distinctions, such 
as yes/no or true/false, FL embraces a framework that captures nuanced "grey areas" that exist in between. 
This flexibility makes it particularly well-suited for applications in healthcare, where information often 
exhibits uncertainty and requires a more nuanced interpretation. 

In healthcare scenarios, where imprecision and uncertainty are inherent, FL provides a valuable tool 
to manage linguistic notions and mitigate the resulting loss of clarity in decision-making processes. This 
proven effectiveness has led to the widespread recognition and utilization of FL technologies in 
addressing the complexities associated with healthcare scenarios. 

The following sections will delve into a comprehensive exploration of FL, its applications in 
healthcare, and its integration with ML techniques to enhance decision-making processes in this critical 
domain. 

1.3. Exploring the Transformative Potential of Integrating ML and FL in Healthcare 
Decision-Making 

The motivation behind this research stems from the profound potential of synergizing ML and FL in 
healthcare, presenting a transformative paradigm capable of addressing the complexities and 
uncertainties inherent in healthcare scenarios. The adaptive learning capabilities of ML algorithms, 
coupled with the nuanced reasoning of FL, form a hybrid model that excels in enhancing diagnostic 
precision, patient care outcomes, and the overall efficiency of healthcare resource allocation. 

Specifically, the research is driven by the recognition that the integration of ML and FL offers 
enhanced disease diagnosis precision. Leveraging extensive healthcare datasets, the ML component 
discerns intricate patterns, while FL interprets linguistic aspects of medical knowledge, contributing to a 
more refined diagnostic process by handling imprecise or uncertain information. 

The work is further motivated by the potential for improved patient care outcomes through the 
adaptive learning of ML algorithms. These algorithms facilitate personalized treatment plans based on 
individual patient characteristics and responses to therapies, complemented by fuzzy logic's capacity to 
consider partial truths and uncertainties, tailoring medical interventions to the diverse and dynamic nature 
of patient conditions. 

The purpose of this study is to develop an advanced model that integrates ML techniques, specifically 
in conjunction with FL, to address the challenges in healthcare classification tasks. The model should be 
capable of effectively handling both linguistic and numeric inputs, catering to non-specialists in the field. 
The main goals of this research are to enhance the accuracy of diagnoses, improve patient care, and 
optimize resource utilization in the healthcare domain. 

The subsequent sections of the paper are structured as follows: Section 2 presents a concise review 
of relevant literature, highlighting key insights drawn from existing research. Section 3 outlines the 
suggested methodology, encompassing data acquisition and the foundational framework of the proposed 
approach. In Section 4, the Experimental Evaluation of Hybrid Model Integration in Healthcare 
Classification is elaborated, providing details on the experimental design and outcomes. Section 5 
engages in a thorough discussion of the results obtained. The paper concludes in Section 6 with a 
summary of findings, insights, and avenues for future research.  
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Table 1. Comprehensive Classification of ML Methodologies in Healthcare. 

Methodology Description Application 
Supervised 
Learning 

Utilizes labelled training data to train the model, 
allowing it to make predictions or decisions based on 
input features. 

Medical diagnosis, 
treatment planning [12] 

Unsupervised 
Learning 

Learns patterns and relationships within data without 
labelled examples. Useful for identifying hidden 
structures and trends. 

Patient clustering, 
anomaly detection [13] 

Reinforcement 
Learning 

Involves training models to make sequences of 
decisions. The model learns from trial and error, 
receiving feedback in the form of rewards or 
penalties. 

Treatment optimization, 
personalized medicine 
[14,15] 

Deep Learning A subset of ML involving neural networks with 
multiple layers (deep neural networks). Enables 
complex pattern recognition and feature extraction. 

Medical imaging analysis, 
pathology detection 
[16,17] 

Ensemble 
Learning 

Combines multiple models to enhance overall 
performance. Ensemble methods include bagging, 
boosting, and stacking. 

Predictive modeling, 
improving model 
robustness [12,18] 

Transfer 
Learning 

Involves training a model on one task and applying 
the knowledge gained to a different but related task. 

Leveraging pre-trained 
models for specific 
healthcare tasks [19,20] 

Semi-
Supervised 
Learning 

Uses a combination of labeled and unlabeled data for 
training. Useful when acquiring labeled data is 
challenging or expensive. 

Limited labeled datasets, 
data with mixed 
annotations [21,22] 

Meta-Learning Focuses on learning how to learn. Aims to enable 
models to adapt quickly to new tasks with minimal 
data. 

Rapid adaptation to 
emerging healthcare 
challenges [23,24] 

Online 
Learning 

Involves continuous learning from new data as it 
becomes available. Suitable for scenarios where data 
streams are constant and evolving. 

Real-time monitoring and 
adaptation in healthcare 
systems [25] 

Explainable 
AI (XAI) 

Emphasizes making ML models understandable and 
interpretable. Essential for ensuring transparency and 
trust in healthcare decision-making. 

Enhancing interpretability 
of diagnoses and  
decisions [26] 

2. Literature Review 
A literature review is the foundation of any study. As a result, a substantial literature review on ML 

and FL in healthcare was conducted. Some of the significant work is provided below: 
The ML techniques that are used in the medical and health sciences have increased significant 

attention in recent years. Researchers have conducted a comprehensive assessment of ML techniques and 
their application in creating reliable and adaptable prediction models [5,27]. This underscores the 
significance of continuously improving and advancing ML techniques for accurate and effective 
prediction models in the medical field. Other studies, like those for applications like disease prediction 
and medical diagnosis use FL, clustering, and SVM methods [6,28]. These studies demonstrate the 
potential of ML in addressing various challenges in healthcare, including improving prediction accuracy, 
reducing network latency, enhancing diagnostic services, and optimizing green computing processes. As 
technology continues to evolve, the integration of AI, ML, and data mining methods in healthcare holds 
great promise for transforming medical practices and improving patient outcomes. 

The tabularized review of the literature, as shown in Table 2, offers a thorough overview of the many 
research projects in the fields of medical and health sciences. The summaries and key inferences are 
presented for each study, highlighting the main findings and contributions.  

Table 2. Advancements and Applications of ML, FL, and AI in Medical and Health Sciences: A 
Comprehensive Review. 

Authors Summary Inference 
Alanazi et al. 
[28] 

A comprehensive evaluation of the utilization 
of ML methods for developing reliable and 
adaptable predictive models within the realm 
of medical and health sciences is conducted. 
Our study scrutinized advanced healthcare 

Different predictive algorithms 
yield varied results and 
proposed models require further 
refinement. 



prediction models, aiming to underscore the 
diversity of outcomes generated by different 
predictive algorithms and the imperative for 
ongoing enhancement in this domain. 

Kushwaha et 
al. [29] 

Introduced a fuzzy magnetic optimization 
clustering approach and its utilization in the 
field of medicine. Explored the significance of 
clustering in data mining and knowledge 
discovery to unveil latent patterns in massive 
datasets. 

Clustering aids in identifying 
patterns and clusters in large 
medical datasets. 

Uddin et al. 
[30] 

Compared various supervised algorithms of 
ML for the prediction of illness. The authors 
emphasized the significance of supervised ML 
techniques in data mining and the promise of 
leveraging health data to predict disease. 

Supervised ML algorithms show 
promise in disease prediction 
using health data. 

Graham et al. 
[31] 

The authors examined the use of AI in mental 
health and offered a summary of recent studies 
focusing on the utilization of AI in mental 
health, emphasizing its capacity to 
complement clinical approaches. The paper 
also explored its potential benefits alongside 
acknowledging constraints, areas requiring 
further research, and ethical considerations. 

AI can complement clinical 
practice in mental health but 
additional research and ethical 
considerations are necessary. 

Shukla et al. 
[32] 

Investigated a three-tier architecture to reduce 
network latency in healthcare IoT they used 
fog computing and ML. Proposed a hybrid 
approach combining FL and reinforcement 
learning for healthcare IoT analysis, aiming to 
improve connection speed. 

The integration of FL and 
reinforcement learning within 
fog computing is geared 
towards minimizing network 
latency in the context of 
healthcare IoT. 

Bhatt et al. 
[33] 

Conducted a survey on chronic kidney disease 
diagnosis using FL. Explored medical expert 
systems designed for illness diagnosis using 
various methods, focusing on the rising 
prevalence of chronic kidney disease. 

FL is employed for diagnosing 
chronic kidney disease, a rising 
global health concern. 

Singh Tomar et 
al. [8] 

Reviewed a Python-based fuzzy classifier for 
cashew kernels. Discussed the application of 
FL, specifically in the Python language, for 
implementing a simple fuzzy classifier and 
compared it to traditional FL tools. 

Python libraries offer an 
effective alternative to 
traditional FL tools in 
implementing fuzzy classifiers. 

Zahra 
Benchara et al. 
[34] 

Introduced a decentralized methodology 
employing a massively parallel and distributed 
virtual mobile agent architecture for the 
analysis of MRI data, showcasing the accuracy 
and effectiveness of the proposed method. The 
approach presented a distributed type-2 FL 
method designed to enhance the efficiency of 
medical informatics data science models. 

The enhancement of medical 
data analysis is achieved 
through the integrated 
architecture. 

Casalino et al. 
[35] 

Introduced a hierarchical fuzzy system for 
assessing the risk of cardiovascular disease. 
Proposed a hierarchical fuzzy inference system 
(HFIS) to predict the severity of cardiovascular 
disease, improving classification performance 
and interpretability compared to simple fuzzy 
inference systems. 

A hierarchical fuzzy system 
improves classification 
performance and interpretability 
in predicting cardiovascular 
disease severity. 

Omoregbe et 
al. [36] 

Developed a text message-based medical 
diagnostic service using NLP and FL. 
Explored the application of NLP methods in 
conversational systems for health diagnosis, 
improving the accuracy of medical diagnoses 
based on user input. 

NLP-based conversational 
systems improve medical 
diagnosis and provide accurate 
prognoses through user input. 
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Zubar et al.[37] Examined the optimization of green computing 
using ML algorithms in healthcare. Explored 
the use of hybrid optimization methods in big 
data analytics to address communication issues 
in healthcare networks, with a focus on heart 
disease and related topics. 

Data mining and optimization 
methods enhance decision-
making in healthcare networks 
and address communication 
challenges. 

Reddy et al. 
[38] 

Presented a hybrid genetic algorithm and FL 
classifier for the detection of cardiovascular 
illness. 

Early detection and treatment of 
cardiovascular illness can 
mitigate mortality rates and 
medical expenses. 

Jayalakshmi et 
al. [39] 

Health monitoring systems for COVID-19 
patients often involve the collection and 
analysis of various physiological parameters 
such as temperature, oxygen saturation, 
respiratory rate, and more. The authors 
proposed a FL system to track COVID-19 
patient’s health. 

Three distinct classification 
models are employed to 
recognize patient activities and 
medical history. Among these, 
the fuzzy adapted model 
demonstrates the highest 
accuracy. 

Ullah et al. [7] The Type-1 membership function, 
characterized by a single membership value, 
inadequately represents the uncertainty in the 
degree of membership. Consequently, when 
there is substantial uncertainty in both the 
source and fused data, the model's reliability 
becomes questionable. Decision-making using 
Type-2 FL (T2FL) has been the subject of 
recent research. T2FL, a FL generalization, 
can handle higher-order types of uncertainty in 
the source data. To address the uncertainty 
present in the decision-making system's input, 
a novel scheme for successfully integrating 
T2FL with Dempster–Shafer evidence theory 
(DST) is put forth in this paper. 

The suggested scheme performs 
significantly better in terms of 
inference accuracy than the 
current schemes based on 
ontology and type-1 FL, on the 
datasets for diabetes and heart 
disease. 

Harb, H. et al. 
[40] 

Incorporating efficient data analytics based on 
sensed data to support medical and hospital 
staff by monitoring and assessing patients in 
real time was done in [19]. They used the Long 
Short-Term Memory (LSTM) model in their 
paper. 

The desired level of accuracy 
required to predict the course of 
the patient's condition heavily 
influences the processing 
complexity of the LSTM; more 
processing complexity is 
required to increase the 
accuracy of the LSTM, and vice 
versa. 

Duggento, A. 
et al. [41] 

In the paper, abnormal phonocardiograms are 
detected using CNN and the Mel-frequency 
spectrum. 

Further efforts are needed to 
fine-tune the classification 
architecture, specifically 
focusing on heart-phase-based 
classification, to achieve a more 
refined and precise clinical 
diagnosis. 

Mostafa et al. 
[42], 
Annamalai et. 
al. [43] 

FL-based AI analysis has been applied to the 
suggestion, development, and testing of 
Internet of Medical Things (IoMT)-based 
remote health monitoring. 

This paper proposed a simple-
to-use device that analyzes 
recorded sensor values using the 
FL system available in Arduino 
libraries to directly provide the 
risk ratio. 

Hameed et al. 
[44] 

In an emergency, patients could benefit from 
remote monitoring thanks to a proposed IoT-
based healthcare infrastructure. 

The system made intelligent 
decisions for patient care, 
management, and monitoring by 
using neural networks and FL 
systems to identify potential 
conditions and treatments. 



Alshamrani et 
al. [45], 
Rahman et al 
[46], Sharma 
[47] 

Some works describe an IoT-based framework 
for monitoring remote patients, such as the 
ones presented [25–27]. These papers describe 
an architecture for an Internet of Things 
system based on three-layer modeling: a 
hardware module with a few sensors for vital 
signs, and a gateway layer that gathers, stores, 
and makes data available for the application 
layer, which is the higher level. 

Although the use of various 
protocols varies in the 
communication layer, overall, 
they adhere to a similar 
architecture, which is becoming 
the norm in many new works 
such as this one. 

Tigga et al. 
[48] 

The goal of the authors was to evaluate the 
patient's risk of diabetes based on their daily 
activities, how they live life, health issues, etc. 
They conducted experiments on 952 records, 
which were gathered through an online and 
offline survey. The Pima Indian Diabetes 
database was treated in the same way. 

The Random Forest (RF) 
classifier demonstrates superior 
performance in evaluating the 
risk of diabetes among patients, 
indicating its effectiveness in 
medical prediction tasks. 

The inferences drawn in table highlight the diverse applications and potential of ML, FL, and AI 
techniques in addressing healthcare challenges and improving patient outcomes. 

The integration of ML algorithms and FL systems has been extensively explored in recent studies 
[49]. Researchers have developed theoretically sound models to facilitate well-informed decision-making 
and forecast patients’ satisfaction with telemedicine [50]. Additionally, simulations for heart disease 
prediction using the partly observable Markov decision process (POMDP) have been proposed [51], with 
detailed design, implementation, testing, and analysis presented [52]. The Inhaler Compliance 
Assessment tool has been utilized to record patients using a Diskus dry powder inhaler [53], while a 
scalable system capable of detecting falls, tracking thousands of senior citizens, and notifying caregivers 
has been demonstrated [54]. ML has also been employed to determine a patient's medical specialty based 
on their symptoms [55]. Furthermore, research has focused on the advantages of various medical imaging 
applications [46], with a threshold approach utilized to automatically split breath cycles into smaller 
cycles [56]. 

The application of various techniques, including SVM, KNN, DT, Ada Boost, RF, K-Mean clustering, 
RNN, CNN, Deep-CNN, FL, LSTM, and others, for disease detection systems is essential for 
understanding how AI aids in disease diagnosis and prediction [57–59]. Observational studies employing 
ML prediction techniques have been used to predict diseases in various contexts [60,61]. ML techniques 
are increasingly being utilized to diagnose and predict a wide range of diseases, including cardiovascular 
diseases, cancers, diabetes, hepatitis, and tuberculosis (TB). 

These studies highlight the diverse applications of ML techniques, FL, and AI in different aspects of 
medical and healthcare domains. They demonstrate the potential for improving prediction models, 
disease diagnosis, data analysis, IoT systems, and patient care through the integration of advanced 
technologies. Despite the potential benefits, the majority of hospitals do not currently use ML 
technologies, largely due to challenges such as lack of expertise among healthcare professionals in 
creating and deploying proficient models. In response to these challenges, a growing field is dedicated 
to automatically selecting, composing, and parameterizing ML and FL models. 

3. Method 
This section provides a foundation for the proposed work with an exploration and comparison of 

various ML techniques, with a focus on identifying their strengths and limitations to optimize 
performance for specific tasks or datasets, aiming to reduce reliance on human experts. In response to 
challenges in performance, scalability, and adaptability, this paper proposes a hybrid approach that 
combines FL with ML. The objective is to develop a hybrid model. Tailored to healthcare, addressing 
the intricacies of datasets, steps for model generation, and the foundational aspects of the proposed 
framework across three subsections. 

3.1. Datasets 
The study utilizes five datasets namely the Pima Indian Diabetes Dataset, Heart Stroke prediction 

dataset, Heart Failure Prediction Dataset, Body Fat Prediction Dataset, and Heart Disease Dataset 
Comprehensive outlined in Table 3. The Source of the datasets, the number of Attributes, and the records 
in each dataset are elaborated in Table 3. These datasets undergo initial cleaning and preprocessing 
procedures to eliminate missing and null values. Then these datasets were used for carrying out the data 
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pre-processing steps. During the feature extraction phase, correlations between the features are identified. 
Subsequently, different ML algorithms are employed, leveraging the selected features, to predict the 
health status of individuals.  

Table 3. Dataset Used. 

Datasets Website No. of Attributes No. of Instances 
Pima Indian Diabetes Dtaset Kaggle 9 768 
Heart Stroke Prediction Dataset Kaggle 12 5110 
Heart Failure Prediction Dataset Kaggle  11 918 
Body Fat Prediction Dataset Kaggle 15 251 
Heart Disease Dataset Comprehensive Ieee-dataport.org 11 1190 

3.2. Steps for Generating a Hybrid Model 
The research process involves the following steps as shown in Figure 1: 

 
Figure 1. Research Process. 

3.2.1. Data Partitioning (Separating Dependent and Independent Attributes) 
Partitioning the available datasets into two parts, with one part containing the dependent attributes 

and the other part containing the independent attributes, as illustrated in Figure 2. 

 
Figure 2. Partitioning of Dataset. 



3.2.2. Dataset Split 
The conventional and straightforward strategy for dividing the modeling dataset, as suggested in 

reference [47], involves putting the training set in the ratio of two-thirds of the data points, while the 
remaining one-third is allocated to the testing set. We divided the dataset into two sets, with 70% of the 
data assigned to the training set and the remaining 30% to the testing set.  

3.2.3 Model Generation 
Utilizing both the dependent and independent attributes from the training set to generate a model. 

3.2.4. Predictive Analysis 
Employing different classifiers to predict the values of the dependent attributes in the testing set using 

the independent attributes as input. 

3.2.5. Performance Evaluation 
Assess the model's performance by comparing the predicted values with the available actual values. 

3.2.6. Model Effectiveness Assessment 
Assessing the effectiveness of these classifiers to determine the optimal model for predicting chronic 

diseases. 

3.3. Foundation of Proposed Framework 
The proposed model relies on key foundational techniques, namely linguistic fuzzification processes, 

principal component analysis, and SVM (as depicted in Figure 3). This section elaborates on the steps of 
the proposed model. 

PHASE-I: DATA PREPARATION: 

1. Dataset Selection and Missing Value Imputation: 

The study utilizes five datasets namely the Pima Indian Diabetes Dataset, Heart Stroke prediction 
dataset, Heart Failure Prediction Dataset, Body Fat Prediction Dataset, and Heart Disease Dataset 
comprehensively outlined in Table 3. The Source of the datasets, the number of Attributes, and the 
records in each dataset are elaborated in Table 3. These datasets undergo initial cleaning and 
preprocessing procedures to eliminate missing and null values. Then these datasets were used for carrying 
out the data pre-processing steps. 

2. Data Normalization using Min-Max Tech: 

The Min-Max technique is used to scale the features within a predetermined range, preserving the 
relative relationships between variables. It also ensures uniformity and consistency in data distribution 
across different features, facilitating optimal model performance. 

3. Train-Test Set Preparation: 

The available datasets are partitioned into two parts, with one part containing the dependent attributes 
and the other part containing the independent attributes, as illustrated in Figure 2. The conventional and 
straightforward strategy for dividing the modeling dataset, as suggested in [47], involves putting the 
training set in the ratio of two-thirds of the data points, while the remaining one-third is allocated to the 
testing set. We divided the dataset into two sets, with 70% of the data assigned to the training set and the 
remaining 30% to the testing set. 

PHASE-II: FUZZIFICATION PROCESS: 
As dataset is complex and contains a large number of numeric values in some attributes such as heart 

rate, blood pressure, etc. To make it simple, fuzzification is added at the preprocessing step to make the 
numeric dataset into crisp form. It helps in making the input simple for training the model. During the 
fuzzification process, each observation is assigned a membership degree in a fuzzy set. This process 
involves assigning an observation a degree of membership in one or more fuzzy sets, which transforms 
numerical data sets into linguistic representations. The triangular membership function is used based on 
the characteristics of the input data and the application requirements. This approach facilitates the 
development of an intuitive understanding of the underlying patterns in the data.  

Following the feature preprocessing in the data preparation step, the datasets undergo a fuzzification 
process. This process involves transforming each feature of an input pattern into its corresponding 
linguistic membership value. 
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Fuzzification assigns an affiliation level to various fuzzy sets for each observation. This approach 
allows us to generate a language-based summary of the numerical data and gain insights into the 
underlying patterns. To address uncertainty and accommodate new input features, linguistic fuzzy 
expansion expands the number of characteristics into linguistic membership values. Equation (1) 
represents the pattern of the kth feature in the dataset D. 

𝑃 𝐹 , ,𝐹 , , … ,𝐹 , , (1) 

The membership value of the jth feature of the mth pattern denoted as Fm, is determined using Equation 
(2) Through the utilization of membership functions, the linguistic qualities of the input features are 
extracted, effectively fuzzifying the original characteristics into appropriate values. 

PHASE-III: FEATURE REDUCTION USING PCA: 
However, the process of linguistic fuzzification leads to an increase in number of features. Equation 

(3) demonstrates that the number of features triples after linguistic fuzzification. To address the issue of 
increased number of features due to linguistic fuzzification, it is essential to extract the characteristics 
that have a strong influence on the model. Principal Component Analysis (PCA) can be employed to 
achieve this. By applying PCA, significant features are extracted from the model, while irrelevant and 
redundant features are discarded. This process ensures that only the characteristics that strongly impact 
the model are retained.  

PHASE-IV: SUPPORT VECTOR MACHINE (SVM) INTEGRATION: 
When compared to other ML classifiers, the SVM is the most accurate ML classifier for early 

detection of heart disease, as per the observations [62,63]. SVM is regarded as a selective classifier, as it 
is trained by determining optimal hyperplanes that partition the data. It has several benefits, including 
the capacity to handle high-dimensional data and the usefulness of modeling non-linear decision 
boundaries in a variety of applications. 

When provided with labelled training data, SVM finds the hyperplane that correctly classifies new 
instances. 

𝐹 , 𝜇low 𝑓 , ,𝜇medium 𝑓 , , 𝜇high 𝑓 ,  (2) 

𝑃 𝜇low 𝑓 , ,𝜇medium 𝑓 , ,𝜇 𝑓 , ,𝜇 𝑓 , ,𝜇medium 𝑓 ,

𝜇high 𝑓 , , … , 𝜇 𝑓 , ,𝜇medium 𝑓 , ,𝜇 𝑓 ,
 (3) 

 
Figure 3. Proposed Framework. 

Data Preparation 
a) Dataset Selection and missing value imputation. 
b) Data Normalization using min-max technique. 
c) Train Test set Preparation. 

Fuzzification Process 
Compute the membership fuzzified value of each pattern Z=(Z1, Z2, Z3,.. , ..Zn) 
using the linguistic membership function. 

Feature Reduction Using PCA 
a) Provide Fuzzified Matrix as an input to the feature reduction phase.  
b) Compute eigen values and eigen vectors. 
c) Sort the eigen vectors generated from the fuzzified matrix according 
to its eigen values. The first k eigen vectors are called reduced features. 

Machine Learning Model 
Support Vector Machine 

Model Effectiveness Assessment 



In a two-dimensional space, this hyperplane divides the plane into two regions, each corresponding 
to a class. SVMs employ support vectors, which are data points closer to the hyperplane, and these 
support vectors affect the position and orientation of the hyperplane. Maximizing the margin of the 
classifier is achieved by leveraging these support vectors, and removing them alters the hyperplane's 
position. Support vectors play a critical role in building SVMs, as they assist in locating an N-dimensional 
hyperplane that effectively splits the data points. Finding a hyperplane that successfully divides the data 
points is the aim of the SVM algorithm. 

Several hyperplanes can be used to split the data points into different classes, but the goal is to identify 
the hyperplane that maximizes the margin. By increasing the margin, future data points can be classified 
with greater confidence. The SVM method increases the separation between the data points and the 
hyperplane. SVMs are encouraged to locate hyperplanes with a wide margin by hinge loss. The hinged 
loss function is resistant to data noise, as illustrated in Equation (4), and is utilized to optimize the margins 
and improve classification accuracy. 

𝐻 𝑋,𝑌, 𝑓 𝑋
0,     if 𝑌 ∗ 𝑓 𝑋 1
1 𝑌 ∗ 𝑓 𝑋 ,     else   (4) 

There is no cost when there is a sign of equality between the projected and actual values. However, 
if the signs differ, a loss value is computed. An easy and effective loss function to optimize is hinge loss. 
To mitigate overfitting and enhance generalization Train-Test Split & Hyperparameter tuning is done. 
We started with a coarse grid search or randomized search to narrow down the search space and then 
used Bayesian Optimization for fine-tuning with parameter range C = 1, Kernal = rbf, and gamma=scale. 

SVM is integrated seamlessly with the FL component to harness the complementary strengths of both 
methodologies for enhanced decision-making and predictive modelling in healthcare settings. 

PHASE-V: MODEL VALIDATION AND DEPLOYMENT:  
The model's performance is assessed by comparing the predicted values with the available actual 

values in terms of Precision, Recall, Accuracy, and F1-score. 

4. Results 
This research focuses on the experimental evaluation of a hybrid model that integrates ML techniques 

with FL for healthcare classification. The study utilizes five healthcare datasets obtained from various 
online repositories, covering data related to diabetes, heart stroke, heart failure, and body fat predictions. 
The empirical findings and evaluations are conducted using the Python 3.8.3 environment with Jupyter 
Notebook. Seven existing ML algorithms, namely NB, KNN, SVM, DT, RF, Logistic Regression, and 
PCA-SVM are applied to these datasets to assess various performance parameters. Subsequently, the 
proposed hybrid Fuzzy-PCA-SVM model is employed on all datasets. The proposed model works well 
with unseen data.  

To evaluate the effectiveness of this model, various performance standards such as accuracy, 
precision, F1-score, and recall have been considered. In this context, accuracy denotes the proportion of 
correctly predicted instances among all the available examples. Precision is defined as the proportion of 
accurate predictions in the occurrences that fall into the positive category. The recall is characterized as 
the ratio of correctly identified Positive samples to all Positive samples. Using their harmonic mean, the 
F1 score combines recall and precision. Figure 4 illustrates the comparative analysis of accuracy, while 
Figure 5, Figure 6, and Figure 7 depict the analysis of precision, recall, and F1-score, respectively. Each 
classifier's performance is assessed on an individual basis, and all outcomes are dutifully documented for 
further analysis. Table 4 depicts the results of accuracy, Table 5 depicts the results of precision, Table 6 
depicts the results of recall and Table 7 depicts the results of F1-score all five datasets respectively. From 
the experimental data provided, several key findings and interpretations can be derived: 

1. Overall Performance Comparison: Fuzzy-PCA-SVM consistently outperforms other models in 
terms of accuracy across all datasets. It achieves the highest accuracy scores in four out of the five 
datasets, indicating its effectiveness in making overall correct predictions. 

2. Accuracy Improvement: Fuzzy-PCA-SVM shows an improvement in accuracy compared to other 
models, especially in datasets such as the Pima Indian Diabetes Dataset (set 1) and Heart Stroke 
Prediction Dataset (set 2), where it achieves notably higher accuracy scores. 

3. Consistent High Performance: Fuzzy-PCA-SVM demonstrates robust performance across 
multiple datasets, suggesting its reliability in different scenarios. It consistently achieves accuracy 
scores above 0.85 in most datasets, indicating its effectiveness in handling various classification 
tasks. 

4. Competitive Performance: While other models like Random Forest (RF) and PCA-SVM also 
show competitive accuracy scores, Fuzzy-PCA-SVM consistently outperforms them, especially 
in datasets with complex patterns or imbalanced classes. 
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5. Potential for Further Improvement: The proposed Fuzzy-PCA-SVM model shows promising 
results, especially in the Heart Disease Dataset Comprehensive (set 5), where it achieves the 
highest accuracy score of 0.92. This suggests that the model has the potential for further 
optimization and improvement. 

Table 4. Accuracy of five healthcare datasets. 

Datasets/Models 
Accuracy 

Naïve 
Bayes 

KNN 
Logistic 
Regression 

SVM DT RF 
PCA-
SVM 

Fuzzy- PCA- 
SVM 

Pima Indian Diabetes 
Dataset (set 1) 

0.75 0.74 0.71 0.77 0.73 0.75 0.78 0.79 

Heart Stroke Prediction 
Dataset (set 2) 

0.78 0.82 0.81 0.84 0.82 0.84 0.85 0.87 

Heart Failure Prediction 
Dataset (set 3) 

0.74 0.77 0.78 0.83 0.82 0.83 0.84 0.85 

Body Fat Prediction 
Dataset (set 4) 

0.73 0.79 0.76 0.81 0.8 0.81 0.82 0.83 

Heart Disease Dataset 
Comprehensive (set 5) 

0.81 0.84 0.88 0.86 0.83 0.9 0.9 0.92 

In summary, the experimental data indicates that Fuzzy-PCA-SVM is the most effective model 
among the compared algorithms in terms of accuracy, demonstrating consistent high performance across 
multiple datasets. Its competitive performance and potential for further improvement make it a promising 
candidate for classification tasks in various domains. 

 
Figure 4. Classifiers Accuracy on five healthcare datasets. 
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Figure 5. Classifiers Precision on five healthcare datasets. 

Table 5. Precision of five healthcare datasets. 

Datasets/Models 
Precision 

Naïve 
Bayes 

KNN 
Logistic 
Regression 

SVM DT RF 
PCA-
SVM 

Fuzzy- PCA- 
SVM 

Pima Indian Diabetes 
Dataset (set 1) 

0.77 0.78 0.76 0.79 0.76 0.79 0.8 0.82 

Heart Stroke Prediction 
Dataset (set 2) 

0.8 0.82 0.81 0.85 0.83 0.86 0.87 0.87 

Heart Failure Prediction 
Dataset (set 3) 

0.75 0.76 0.78 0.82 0.81 0.85 0.86 0.88 

Body Fat Prediction 
Dataset (set 4) 

0.76 0.79 0.76 0.8 0.81 0.82 0.83 0.84 

Heart Disease Dataset 
Comprehensive (set 5) 

0.86 0.81 0.84 0.87 0.84 0.89 0.89 0.9 

From Table 5, following inferences can be drawn regarding the precision performance of different 
models on various datasets: 

1. Fuzzy-PCA-SVM consistently achieves the highest precision scores across all datasets, indicating 
its effectiveness in making accurate positive predictions while minimizing false positives. 

2. SVM and PCA-SVM generally exhibit high precision scores across datasets, suggesting they are 
robust in making accurate positive predictions. 

3. Naïve Bayes and DT tend to achieve lower precision scores compared to other models, indicating 
they may be prone to a higher rate of false positive predictions. 

4. The Heart Disease Dataset Comprehensive (set 5) consistently yields higher precision scores 
across all models, suggesting it may have a more balanced distribution of positive and negative 
samples, making it easier for models to make accurate positive predictions. 

Overall, the impact of the models on the datasets varies, but SVM, Random Forest (RF), PCA-SVM, 
and Fuzzy-PCA-SVM consistently demonstrate strong performance across different datasets, indicating 
their effectiveness in handling various prediction tasks. These models tend to capture the complexities 
of the datasets well and provide high precision in their predictions. Naïve Bayes and Logistic Regression, 
while competitive, generally exhibit slightly lower precision scores compared to the more sophisticated 
models across most datasets. 
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Figure 6. Classifiers Recall on five healthcare datasets. 

Table 6. Recall of five healthcare datasets. 

Datasets/Models 
Recall 

Naïve 
Bayes 

KNN 
Logistic 
Regression 

SVM DT RF 
PCA-
SVM 

Fuzzy- PCA- 
SVM 

Pima Indian Diabetes 
Dataset (set 1) 

0.75 0.77 0.76 0.79 0.77 0.78 0.8 0.82 

Heart Stroke Prediction 
Dataset (set 2) 

0.77 0.82 0.8 0.83 0.83 0.84 0.85 0.85 

Heart Failure Prediction 
Dataset (set 3) 

0.76 0.77 0.78 0.81 0.78 0.81 0.83 0.84 

Body Fat Prediction 
Dataset (set 4) 

0.74 0.76 0.76 0.81 0.81 0.82 0.84 0.85 

Heart Disease Dataset 
Comprehensive (set 5) 

0.82 0.82 0.83 0.86 0.83 0.85 0.87 0.88 

From Table 6, several inferences can be drawn regarding the recall performance of different models 
on various datasets: 

1. Fuzzy-PCA-SVM: Generally leads in recall across most datasets, indicating it effectively 
identifies relevant data points while minimizing false negatives, and exhibits the effectiveness of 
the hybrid approach in improving recall performance. 

2. .SVM and RF: Consistently rank high in recall, demonstrating their ability to capture complex 
relationships and avoid missing true positives. 

3. PCA-SVM: Performs well in most datasets, suggesting dimensionality reduction is beneficial for 
recall in some cases. 

4. Naïve Bayes and KNN: Show decent recall but are sometimes outperformed by other models, 
potentially due to limitations in handling complex relationships or specific data characteristics. 

Overall, the recall data suggests Fuzzy-PCA-SVM might be a strong choice for tasks prioritizing 
minimizing false negatives, particularly in complex datasets with potentially fuzzy features. However, a 
broader analysis considering all evaluation metrics, statistical significance, and detailed model 
information is crucial for robust decisions. 
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Figure 7. Classifiers F1-Score on five healthcare datasets. 

Table 7. F1-Score of five healthcare datasets. 

Datasets/Models 
F1-Score 

Naïve 
Bayes 

KNN 
Logistic 
Regression 

SVM DT RF 
PCA-
SVM 

Fuzzy- PCA- 
SVM 

Pima Indian Diabetes 
Dataset (set 1) 

0.76 0.77 0.76 0.79 0.76 0.78 0.8 0.82 

Heart Stroke Prediction 
Dataset (set 1) 

0.78 0.82 0.8 0.84 0.83 0.85 0.86 0.86 

Heart Failure Prediction 
Dataset (set 3) 

0.75 0.76 0.78 0.81 0.79 0.83 0.84 0.86 

Body Fat Prediction 
Dataset (set 4) 

0.75 0.76 0.78 0.81 0.79 0.83 0.84 0.86 

Heart Disease Dataset 
Comprehensive (set 5) 

0.84 0.81 0.83 0.86 0.83 0.87 0.88 0.89 

From the above Table 7, the following inferences can be drawn regarding the performance of different 
models on various datasets: 

1. Fuzzy-PCA-SVM: Achieves the highest overall F1-score across most datasets, suggesting a good 
balance between precision and recall, minimizing both false positives and negatives. 

2. SVM and RF: Consistently rank high in F1-score, demonstrating their ability to achieve both high 
precision and recall in diverse classification tasks. 

3. PCA-SVM: Performs well in most datasets, indicating dimensionality reduction is beneficial for 
balanced performance in some cases. 

4. Naïve Bayes and KNN: Show decent F1-score but are sometimes outperformed by other models, 
potentially due to limitations in specific datasets or complex relationships. 

5. The Heart Disease Dataset Comprehensive (set 5) consistently yields higher F1-scores across all 
models, suggesting it may be a more discriminative dataset for classification tasks compared to 
other datasets. 

Overall, the F1-score data suggests Fuzzy-PCA-SVM might be a strong choice for tasks requiring a 
balance between precision and recall, particularly in complex datasets with potentially fuzzy features. 

5. Discussion 
Following are some final interpretations, inferences, and key findings regarding the performance of 

various models on different datasets: 

 Overall Performance: 

1. Fuzzy-PCA-SVM: Consistently ranks high or achieves the best score across all metrics and 
most datasets, suggesting it's a strong general-purpose model for diverse classification tasks. 

2. SVM and RF: Often perform competitively across most metrics and datasets, indicating their 
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versatility and effectiveness in handling various data characteristics. 
3. PCA-SVM: Shows potential benefits in some datasets, suggesting dimensionality reduction 

can be helpful for specific data, but its performance varies. 
4. Naïve Bayes and KNN: Generally, show lower performance compared to other models across 

most metrics and datasets, suggesting limitations in handling complex relationships or specific 
data types. 

 Dataset-Specific Observations: 

1. Pima Indian Diabetes: Fuzzy-PCA-SVM leads in most metrics, followed by SVM and RF. 
2. Heart Stroke Prediction: Fuzzy-PCA-SVM and SVM are neck-and-neck, with RF close behind 

in most metrics. 
3. Heart Failure Prediction: Fuzzy-PCA-SVM leads in most metrics, followed by SVM and RF. 
4. Body Fat Prediction: Fuzzy-PCA-SVM again excels in most metrics, followed by SVM and 

RF. 
5. Heart Disease Dataset Comprehensive: Fuzzy-PCA-SVM demonstrates clear dominance in 

most metrics, followed by SVM and RF. 

 Key Inferences: 

1. Handling Fuzzy Features: If datasets involve inherent fuzziness, Fuzzy-PCA-SVM might be 
particularly effective in incorporating such characteristics for better overall performance. 

2. Complex Data: Fuzzy-PCA-SVM's consistent leadership suggests it effectively handles 
complex data with both numerical and potentially fuzzy features. 

3. Dimensionality Reduction: While PCA-SVM shows benefits in some cases, its impact varies 
depending on the dataset, suggesting careful evaluation for specific scenarios. 

4. Non-linear Relationships: SVM and RF's strong performance in many datasets indicates their 
ability to capture complex interactions, potentially beneficial for non-linear relationships. 

 Limitations and Further Analysis: 

1. Missing Information: Detailed information about datasets, features, and model 
configurations is crucial for drawing definitive conclusions. It is highly desirable to advance 
this study further, emphasizing real-world datasets rather than solely relying on theoretical 
frameworks. 

2. Statistical Significance: Performing statistical tests like paired t-tests or ANOVA can solidify 
observed performance differences between models. 

3. Visualization: Techniques like confusion matrices or ROC curves could provide deeper 
insights into model behavior for specific classes or prediction probabilities. 

Overall, this combined analysis suggests Fuzzy-PCA-SVM emerges as a promising model for diverse 
classification tasks, particularly when dealing with complex or potentially fuzzy data. However, 
considering all evaluation metrics, statistical significance, and detailed model information is crucial for 
robust decisions. 

A complete list of abbreviations is shown in Appendix I. 

6. Conclusions and Future Work 
In conclusion, this research paper presents a comprehensive investigation into the application of ML 

techniques for disease diagnosis, emphasizing the necessity of integrating both linguistic and numeric 
inputs to enhance diagnostic accuracy and robustness. Through an empirical evaluation using diverse 
healthcare datasets, the study introduces a hybrid ML-fuzzy logic (FL) model, Fuzzy-PCA-SVM, and 
compares its performance with seven existing ML algorithms. Five healthcare datasets related to diabetes, 
heart stroke, heart failure, and body fat predictions were utilized for experimental evaluation. Existing 
ML algorithms, including DT, RF, KNN, Logistic Regression, NB, SVM and PCA-SVM, were applied 
to the datasets to assess performance measures such as accuracy, F1-score, recall, and precision. The 
results demonstrate the superiority of the proposed hybrid model, particularly in handling complex and 
potentially fuzzy data, as evidenced by its consistently high performance across multiple metrics and 
datasets. While SVM and RF also exhibit competitive performance, the study highlights the potential of 
integrating FL systems with ML techniques to achieve superior classification outcomes. Furthermore, 
the paper identifies limitations and areas for further analysis, emphasizing the importance of robust 
evaluation methodologies and the need for continued advancements in feature selection techniques and 
real-world dataset utilization in healthcare analytics research. Overall, the findings underscore the 



significance of leveraging hybrid ML-FL models like Fuzzy-PCA-SVM for enhanced disease diagnosis 
and pave the way for future research aimed at improving healthcare classification outcomes. 
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