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Abstract: Image defogging has become a major difficulty in the quickly developing field of digital photography. 
Addressing this issue is crucial, given the growing need for crisp, high-quality images in industries like social 
networking, entertainment, navigation, and surveillance. Researchers from all over the world have put out a variety 
of presumptions and techniques to improve clarity in hazy or foggy images. This research paper proposed a new 
deep learning algorithm, the Double U-Net algorithm. Which is a concatenation of two similar or distinct U Net 
architectures to produce the best possible outcomes while enhancing visibility in cloudy photos. We conduct a 
thorough analysis to compare the effectiveness of the proposed algorithm with other state-of-the-art defogging 
methods, considering factors such as robustness to varying fog intensities and image features, computing efficiency, 
and visual quality. It is observed that the proposed architecture outperformed other techniques in terms of PSNR 
(26.88) and SSIM (0.99979). The findings demonstrate that the proposed algorithm performs exceptionally well in 
improving visibility and recovering fine-grained image information under various atmospheric situations. 

Keywords: image processing; double U-Net architecture; image defogging; image dehazing; CNN; autoencoder;  
U-Net; PSNR; SSIM; accuracy; BCE  
 

1. Introduction 
Image processing has evolved rapidly in recent years, with various techniques developed to improve 

image quality [1]. In this field, one of the crucial challenges is dealing with degraded visibility and 
blurred appearance caused by environmental factors such as fog, haze, or other atmospheric  
conditions [2]. These factors can significantly affect the quality and usability of images [3]. To address 
this challenge, an image-defogging technique is introduced to enhance the visibility of images degraded 
by fog or haze [4]. It involves removing the effects of atmospheric scattering, which causes the image to 
appear hazy or blurry. There are several types of image-defogging techniques, including single-image 
and multi-image defogging methods. Single-image defogging techniques use only one image to remove 
the effects of haze, while multi-image defogging techniques use multiple images to improve the image 
quality [5].  

Various image-defogging techniques have been developed for solving real-world problems like 
transportation that improve the visibility of images captured by cameras on vehicles, thereby enhancing 
driver safety [6]. It is also helpful in surveillance, making identifying suspects easier [7]. However, 
image-defogging techniques also have limitations. One of the major shortcomings is the computational 
complexity of the methods, which can make them impractical for real-time applications [8]. Another 
limitation is the accuracy of the techniques, which can be affected by factors such as lighting conditions 
and the type of haze [9]. Researchers developed deep learning algorithms to overcome these limitations 
for more efficient and accurate image-defogging techniques. These algorithms improve the performance 
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by identifying the intricate patterns of the image. Architectures like CNN [10], Autoencoders [11], and 
U Net [12] are state-of-the-art deep learning tools used to solve many real-world problems [13].  

CNNs were among the first image-processing deep-learning models to be implemented practically in 
the last decade. These models used the ‘convolutional approach’ to localize essential features in an image 
array to identify them [14]. These models kick-started computer vision research and became the 
foundation for more advanced Deep Learning models and architectures, including the Autoencoders and 
U-Nets [15]. Autoencoders have an encoder-decoder architecture, which allows them to shrink original 
images to a minimum and reconstruct them into the desired output, making them suitable for image 
denoising and recolorization tasks [16]. U-Nets are one step ahead of autoencoders, with concatenated 
skip connections, allowing them to perform higher-level image transformation tasks such as dehazing 
and, to some extent, style transfer [17]. 

In this paper, we have proposed an image defogging architecture, i.e., double-U Net Architecture, 
which is a combination of image fusion and dehazing techniques to improve image quality. This 
architecture works by estimating the haze transmission map, which represents the amount of haze in each 
pixel of the image. Double U Net architecture applies a haze removal process to recover clear and sharp 
images using the estimated transmission map. Some key advantages of the Double-U Net architecture 
include its ability to handle different types and levels of haze, its effectiveness in preserving image details 
and colors, and its computational efficiency. With its ability to effectively remove haze, preserve image 
details and colors, and its computational efficiency, the Double-U Net architecture is a powerful tool for 
enhancing visibility and improving the quality of foggy or hazy images. 

The organization of this paper is as follows: Section 2 briefs the deep learning algorithms used for 
image defogging. The working of the baseline models and the proposed algorithm is presented in  
Sections 3 and 4. Section 5 describes the experimental setup, followed by the results and discussions in 
Section 5. The paper is concluded in Section 6. 

2. Related Works 
Tufail et al. [18] proposed a novel approach to enhance image-defogging techniques by optimizing 

the transmission map, particularly leveraging the dark channel before estimating atmospheric light more 
accurately. Their methodology involved adaptive selection of the transmission map, determined by the 
fog density within the image. Additionally, they utilized Laplacian and guided filters to refine the 
transmission map, significantly improving the visibility of images, especially those with expansive sky 
regions. Deshmukh et al. [19] addressed the major issue of fog-related accidents for vehicles. Their 
proposed method included a complete embedded system for restoring foggy images, utilizing the Mean 
Channel Prior (MCP) algorithm for defogging. The system employed a Raspberry Pi, camera, and display 
screen, making it a low-power, portable, and standalone system. They compared the results based on 
Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR), concluding its superiority, especially 
in scenarios with varying levels of fog density.  

Wang et al. [20] presented a linear model to estimate the transmission function efficiently. They 
employed a quadtree to search for a region that best represents the scatter of airlight, demonstrating 
comparable results to state-of-the-art techniques while significantly improving efficiency. Mao et al. [21] 
introduced a novel method for defogging single images using multi-exposure image fusion and detail 
enhancement. Their efficient algorithm fused multiple images with different exposures to enhance 
defogged image visibility. The method also included a detail enhancement technique, which further 
improved the quality of the defogged image. Kumari and Sahoo [22] presented a novel visibility 
restoration approach for remote sensing images affected by adverse weather conditions like haze and fog. 
The method was based on segmentation and unsharp mask-guided filtering, first employing a 
segmentation method to determine atmospheric light and then estimating the transmission map using the 
dark channel prior. To address halo artifacts and inconsistencies in the resultant image, they utilized a 
guided filter method based on unsharp masking to optimize the transmission map. Their experimental 
results demonstrated high uniformity in qualitative and quantitative evaluations using six  
performance metrics.  

Lieu et al. [23] conducted a comprehensive study addressing significant challenges in image 
defogging. They introduced the Multiple Real-World Foggy Image Dataset (MRFID), containing foggy 
and clear images from 200 outdoor scenes. Processing these images using 16 defogging methods, they 
comprehensively evaluated the visual quality of the defogged images. Additionally, they developed a 
new Fog-relevant Feature-based Similarity index (FRFSIM) for assessing the visual quality of defogged 
images, showing promising results in their extensive experimental evaluations. This work significantly 
contributes to the literature by addressing the lack of real-world foggy image datasets and introducing a 
new image quality assessment method.  
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Tannistha et al. [24] presented a significant contribution to fog removal from images, addressing two 
critical challenges: the lack of real-world foggy image datasets and the absence of suitable image quality 
assessment methods. They introduced the SAMEER–TU database, containing 5,390 images captured 
under varying visibility conditions. Additionally, they proposed a method for enhancing the visibility of 
foggy images. Qu et al. [25] conducted a study on defogging optical remote sensing images, introducing 
a new algorithm that adjusts the transmittance attenuation values across three channels based on different 
wavelengths. Their method incorporated deep learning techniques for segmenting dense fog areas and 
estimating global atmospheric light, showing promising results in improving image clarity and quality. 
Anan et al. [26] introduced a novel framework for defogging foggy images, addressing the limitations of 
the Dark Channel Prior (DCP) technique. The approach involved segmenting images into sky and non-
sky regions, restoring these parts separately, and blending them. By using Contrast Limited Adaptive 
Histogram Equalization (CLAHE) for the sky and a modified DCP for the non-sky regions, the proposed 
method achieved improved visual quality and lower processing time than other techniques. 

Hassan et al. [27] proposed a cascade strategy for foggy image defogging, combining CLAHE and 
the No-Black Pixel Constraint with Planar Assumption (NBPC + PA). The proposed algorithm achieved 
better defogging results for homogeneous and inhomogeneous fog by resolving CLAHE’s limitations 
and optimizing parameters. Chen et al. [28] proposed an integrated image-defogging network that 
combines an improved atmospheric scattering model with attention feature fusion. The approach 
addressed uneven fog density in images by leveraging an attention mechanism. The proposed method 
achieved robust defogging results by treating thick fog and mist differently. However, when applied to 
real natural foggy images, some patches may appear in the restored images. Overall, the approach 
reasonably removes thick fog and mist while preserving image quality.  

3. Existing Models 
The most widely used base models for general defogging and image transformation tasks are the 

Convolutional Neural Network (CNN), Autoencoders, and the U-Net. Each of these models is explained 
one by one in this section 

3.1. Convolutional Neural Networks (CNN) 
A Convolutional Neural Network (CNN) is a deep learning architecture designed for processing 

unstructured data, most commonly images. CNNs are masters in identifying localized patterns within the 
pixel values of images, making them quite suitable for tasks like image classification and segmentation 
and, in some cases, image transformation. It has convolutional layers that learn high and low-level 
hierarchical features by itself. The proposed Convolutional Network differs from conventional CNNs, as 
it does not include pooling or deep hidden layers. It consists of Convolutional layers, with a uniform 
kernel size of (1,1), to ensure consistency in input and output shape. This is done since the task is not 
image classification but rather image transformation from densely foggy images to non-foggy images, 
thus making this CNN architecture somewhat border-line Autoencoder. The hyperparameters, including 
the number of layers, filter size, kernel shapes, activation functions, and size of layers, are given in  
Table 1. 

Table 1. CNN Architecture. 

Layers 

Con0: 16 filters (1 × 1 size) 
Con1: 32 filters (1 × 1 size) 
Con2: 64 filters (1 × 1 size) 
Con3: 128 filters (1 × 1 size) 
Con4: 256 filters (1 × 1 size) 
Con5: 128 filters (1 × 1 size) 
Con6: 64 filters (1 × 1 size) 
Con7: 32 filters (1 × 1 size) 
Con8: 16 filters (1 × 1 size) 
Activation functions: RelU 
Con9: 3 filters (1 × 1 size) 
Activation function: Sigmoid 

Input Shape 128 × 256 × 3 
Output Shape 128 × 256 × 3 
Optimization Adam 
Loss Function Binary Cross Entropy 
Performance Matrix Accuracy 
Epochs 20 
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3.2. Autoencoder 
An autoencoder is a deep learning architecture for unsupervised learning and feature extraction from 

image datasets. It usually consists of two parts: an encoder, employing many convolutional layers for 
spatial feature extraction, and a decoder, using similar convolutional layers for image reconstruction, 
forming the output. The encoder section of this architecture downsampled the image to the bottom layer, 
while the decoder section resamples it back to the shape of the output, thus giving this architecture a 
double-sided funnel-like shape. The Autoencoder developed for this research consists of three 
convolutional layers with strides in the encoder section, whereas convolutional layers are along with 
three upsampling layers in the decoder section. The detailed structure and respective hyperparameters 
are explained in Table 2. 

Table 2. Autoencoder Architecture. 

Convolutional & Upsampling Layers 

Con0: 16 filters (3 × 3 size, 2 strides) 
Con1: 32 filters (3 × 3 size) 
Con2: 64 filters (3 × 3 size, 2 strides) 
Con3: 128 filters (3 × 3 size) 
Con4: 256 filters (3 × 3 size, 2 strides) 
Con5: 256 filters (3 × 3 size) 
Con6: 256 filters (3 × 3 size) 
UpSamp0: (2 × 2) 
Con7: 128 filters (3 × 3 size) 
Con8: 64 filters (3 × 3 size) 
UpSamp1: (2 × 2) 
Con9: 32 filters (3 × 3 size) 
Con10: 16 filters (3 × 3 size) 
UpSamp2: (2 × 2) 
Activation functions: RelU 
Con11: 3 filters (1 × 1 size) 
Activation function: Sigmoid 

Input Shape 128 × 256 × 3 
Output Shape 128 × 256 × 3 
Optimization Adam 
Loss Function Binary Cross Entropy 
Performance Matrix Accuracy 
Epochs 20 

3.3. U-Net Architecture 
U-Net is a robust deep-learning architecture widely employed for image transformation and denoising 

tasks. Its distinctive feature is its recognizable U-shaped architecture, consisting of a contracting path for 
capturing contextual information and an expansive path for precise localization. A U-Net can be 
considered a specialized, upgraded Autoencoder since it shares its core structure with an Autoencoder 
architecture, i.e., it comprises an encoder, base, and decoder. The key difference lies in the intermediate 
layers on encoders and decoders sharing the same output shape, which are concatenated with the help of 
skip connections, as shown in Figure 1. 

The encoder part comprises convolutional and pooling layers, effectively extracting hierarchical 
features, while the decoder, symmetrically connected through skip connections, reconstructs the 
segmented output with fine-grained details. U-Net's ability to integrate global and local features, 
facilitated by skip connections, makes it particularly effective for tasks requiring pixel-wise 
transformation, such as defogging/dehazing in our case. The architecture’s versatility and robustness 
have extended its applications to various domains where accurate image reconstruction and 
transformation are essential. Table 3 provides the U-Net architecture. 
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Table 3. U-Net description. 

Convolutional & TansConvo Layers 

2 × Con0: 16 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con1: 32 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con2: 64 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con3: 128 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con4: 256 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × TransCon0: 128 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon1: 64 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon2: 32 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon3: 16 filters (3 × 3 size) 
strides(2,2) 
Activation function: Sigmoid 

Input Shape 128 × 256 × 3 
Output Shape 128 × 256 × 3 
Optimization Adam 
Loss Function Binary Cross Entropy 
Performance Matrix Accuracy 
Epochs 20 

4. Proposed Model (Double U Net Algorithm) 
A novel neural network model, the Double-U Net algorithm, is proposed to perform the required 

defogging task. At its core, Double-U Net is a concatenation of two identical or distinct U-Net models. 
In other words, the Double-U Net model concatenates two U-Net architectures sequentially placed one 
after the other. Therefore, the output produced by the first U-Net becomes the input of the subsequent U-
Net. This sequential architecture, as per our observations, provides multiple benefits. The Sequential 
Nature of the Architecture allows hierarchical learning, which is extremely useful in dehazing/defogging 
tasks as the first U-Net cycle captures lower-level features, and the next cycle refines them into higher-
level features. This architecture also allows progressive refinement of images, making image 
transformation/denoising more efficient and accurate. Furthermore, it provides immense flexibility to the 
architecture, as each U-Net cycle can be tweaked and modified separately without disturbing the 
consistency of input and output layers. An overview of the architecture of Double-U Net and its working 
is briefly explained using the diagram in Figure 1.  

The number of layers and nodes on each layer of both the U-Nets depend entirely on the magnitude 
of the dataset to be trained and the dimensions of the image. After weeks of experimentation and testing 
various variations of this architecture on multiple sun sections of the foggy Cityscapes dataset [24], we 
came up with the idea of using a distinct pair of U-Net for concatenation, with the later (second) U section 
having double the nodes at each layer than the former (first) U section. However, the number of hidden 
layers remains the same for both sections. This allowed the architecture to capture low-level features in 
the first section and higher-level features in the subsequent section. Table 4 exhibits the details of the 
structure and hyperparameters used to make the Double U-Net architecture. 
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Figure 1. The Double-U Net Architecture. 
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Table 4. The Double-U Net Architecture. 

Convolutional & TansConvo Layers 

2 × Con0: 16 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con1: 32 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con2: 64 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con3: 128 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con4: 256 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × TransCon0: 128 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon1: 64 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon2: 32 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon3: 16 filters (3 × 3 size) 
strides(2,2) 
2 × Con5: 16 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con6: 32 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con7: 64 filters (3 × 3 size) 
Maxpooling(2,2) 
2xCon8: 128 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × Con9: 256 filters (3 × 3 size) 
Maxpooling(2,2) 
2 × TransCon4: 128 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon5: 64 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon6: 32 filters (3 × 3 size) 
strides(2,2) 
2 × TransCon7: 16 filters (3 × 3 size) 
strides(2,2) 
Activation function: Sigmoid 

Input Shape 128 × 256 × 3 
Output Shape 128 × 256 × 3 
Optimization Adam 
Loss Function Binary Cross Entropy 
Performance Matrix Accuracy 
Epochs 20 

5. Experimental Setup 
The experiment is performed by training the model on an NVIDIA TESLA P100 cloud GPU. The 

models were created, trained and deployed on Kaggle [29], a widely used online Data Science platform. 
To work with Neural Network Architectures, we have used the TensorFlow library, as well as a few other 
supporting libraries like Numpy, Pandas, OpenCV2, and Matplotlib. The dataset used for this research is 
Foggy Cityscapes, a Benchmark dataset that is a derivative of the widely used Cityscapes dataset [30]. 
This is a synthetic foggy dataset that simulates fog in real scenes. Each foggy image is rendered with a 
clear image and depth map from Cityscapes. Thus, the annotations and data split in Foggy Cityscapes 
are inherited from Cityscapes. The dataset contains a total of 10,425 images of size 1,024 × 2,048 pixels. 
Each image in the dataset has three alpha channel values, 0.005, 0.01, and 0.02, resulting in 3,475 distinct 
pictures with these three alpha channel values. To make the dataset fit for the proposed model, the images 
are scaled to 128 × 256 pixels and divided into three categories based on their alpha channel values: 

1. 0.005:- No fog images 
2. 0.01:- Medium foggy images 
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3. 0.02:- Dense foggy images 

After experimentation with all the available classes, it was decided to drop the medium fog class 
altogether and train the model to transform the densely foggy images into non-foggy images directly. 
Furthermore, the RGB channel values have been scaled down from the range of 0–255 to 0–1 with the 
help of normalization. Next, we divide the dataset into a training set (3,000 images per class) and a testing 
set (475 images per class).  

5.1. Loss Function: Binary Cross Entropy 
A loss function is the most critical component in the training process of any neural network 

architecture, as it guides the optimization algorithm to update the model's parameters to minimize the 
distance of predicted values from the actual values. In this paper, we have used Binary Cross Entropy 
(BCE), also known as logarithmic loss or log loss, which is a loss function model metric that tracks 
incorrect labeling of the data class by a deep learning model. It is usually used to measure the performance 
of a classification model whose output is a probability value in the range of 0 to 1 [31]. Low log loss 
values equate to high accuracy values. Mathematically, it can be expressed as: 

BCE (y , y’ ) = - ( y . log (  y’  ) + ( 1 - y ) . log ( 1 -  y’  ) ) (1) 

where y is the actual binary label (0 or 1) of the class, and y’ is the predicted probability of a data point 
belonging to class 1. 

5.2. Performance Metrics 
To evaluate the performance of image-defogging techniques, we need to establish criteria for 

evaluation and performance metrics. The criteria for performance evaluation include the accuracy of the 
method in removing haze, the computational complexity of the method, and the robustness of the method 
to different types of haze. The performance metrics include the accuracy, peak signal-to-noise ratio 
(PSNR), and the structural similarity index (SSIM) [32], as discussed below: 

i. Accuracy 

Accuracy is the ratio of correctly classified points (prediction) to the total number of predictions. Its 
value ranges between 0 and 1 [33]. In simple terms, it is a measure of the correctness of predicted values. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 (2) 

ii. Structural Similarity Index 

The Structural Similarity Index (SSIM) is a perceptual metric that quantifies image quality 
degradation caused by processing such as data compression or by losses in data transmission. It is a 
complete reference metric that requires two images from the same image capture—a reference image and 
a processed image [34].  

The SSIM index is calculated on various windows of an image. The measure between two windows 
x and y of common size N × N is: 

𝑆𝑆𝐼𝑀ሺ𝑥,𝑦ሻ  ൌ  
ሺ2𝜇௫𝜇௬  ൅  𝑐ଵሻ ሺ2𝜎௫௬  ൅  𝑐ଶሻ

ሺ𝜇௫ଶ  ൅  𝜇௬ଶ  ൅  𝑐ଵሻ ሺ𝜎௫ଶ  ൅  𝜎௬ଶ  ൅  𝑐ଶ ሻ
 (3) 

Here, 𝜇௫,𝜇௬ are the averages of x and y and 𝜎௫ଶ,𝜎௬ଶ  are the variances of x and y whereas 𝜎௫௬  
represents the covariance and 𝑐ଵ and 𝑐ଶ are two variables used to stabilize the division with weak 
denominator:  

𝑐ଵ ൌ  ሺ𝑘ଵ𝐿ሻଶ , 𝑐ଶ ൌ  ሺ𝑘ଶ𝐿ሻଶ  (4) 

Here L is the dynamic range of pixel values, 𝑘ଵ and 𝑘ଶ are set to 0.01 and 0.03. 

iii. Peak Signal-to-Noise Ratio (PSNR) 

The Peak Signal-to-Noise Ratio (PSNR) is a measure used in image and video quality assessment. It 
is defined via the Mean Squared Error (MSE), which measures the average of the squares of the errors 
between a noise-free image and its noisy approximation [35]. 

Here’s the formula for PSNR: 

𝑃𝑆𝑁𝑅 ൌ  10𝑙𝑜𝑔ଵ଴ሺ
ሺ𝐿 െ 1ሻଶ

𝑀𝑆𝐸
ሻ  ൌ  20𝑙𝑜𝑔ଵ଴ሺ

𝐿 െ 1
𝑅𝑀𝑆𝐸

ሻ (5) 

Here, L is the maximum number of possible intensity levels and MSE is the mean square error: 



543 
 

𝑀𝑆𝐸 ൌ
1
𝑚𝑛

෍ ⬚

௠ିଵ

௜ୀ଴

෍⬚

௡ିଵ

௝ୀ଴

ሺ𝑂ሺ𝑖, 𝑗ሻ  െ 𝐷ሺ𝑖, 𝑗ሻሻଶ (6) 

Here, O and D are the original and degraded images. 

6. Experimental Results and Analysis 
This section gives insights into the performance of the proposed model based on model training 

analysis and the evaluation metrics as given below: 

6.1. Model Training Analysis  
The proposed Double-U Net model was trained on the training dataset of 3,000 images for 20 epochs. 

The average time to train the model per epoch was approximately 35 seconds, courtesy of the TESLA 
P100 Cloud GPU, and the entire training process took around 12 minutes. The model training started off 
well, with the first epoch yielding an impressive training accuracy of 0.8005 and loss of just 0.6060, 
which testifies the robustness and feature extraction power of this architecture. after 20 epochs, the 
architecture had an accuracy of 0.9225 and a training loss of just 0.5879, making it a highly reliable 
model. The graph in Figure 2 represents the training history of this model, which clearly indicates how 
the model was rapid and efficient in generalizing the datasets.  

 
Figure 2. Training Graph of Double-U Net. 

Figure 3 clearly shows the inconsistent fluctuations in the plot of compared models with that of the 
proposed model, which strongly indicates that these models are finding it hard to generalize well on the 
training data. 
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Figure 3. Training Accuracy Comparison of models. 

6.2. Model Performance Analysis 
The testing phase of the Double-U Net architecture solidified the findings from the training phase. 

The model was tested on a set of 475 images, and, upon evaluation, yielded an impressive accuracy of 
0.9176 (91.78%) with a loss of just 0.5736. The output was then rescaled and converted back to the image 
dataset, which was further tested against the ground truth data to go through further evaluation metrics, 
that is, SSIM and PSNR. the mean Structural Similarity Index of the images produced by our model with 
the ground truth was an impressive 0.99978, which means that the structural similarity of the predicted 
and actual (ground truth) images is nearly similar. The PSNR value for the predicted dataset with respect 
to the original dataset was respectable at 26.88, a value that indicates good reconstruction. Upon 
comparing these results with the ones obtained from state of the art models, the consistency and 
robustness of Double-U Net become evident. As shown in Table 5, the Double-U Net yields superior 
results than all of its contemporary competitors, namely CNN, Autoencoder, and U-Net in every single 
performance metric we calculated. 

Table 5. Performance Comparison of all the Models on Test Data. 

Model Name Loss Accuracy SSIM PSNR 

Double-U Net 0.5736 91.76% 0.9997 26.88 

U-Net 0.5829 88.54% 0.9967 24.38 

Autoencoder 111,347 14.26% 0.9822 07.71 

CNN 0.5784 87.94% 0.9953 24.04 

Finally, looking at the output result itself will help in truly absorbing the efficiency and validity of 
the Double-U Net. Figure 4 showcases one of the outputs produced by the Double-U Net architecture 
along with the original foggy image and the ground truth. 
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Foggy Image Ground Truth Predicted Output 
Image 1 

   
Image 2 

   
Image 3 

   
Image 4 

   
Figure 4. Comparison of predicted output with the ground truth. 

7. Conclusions 
In conclusion, we have proposed a improved version of U net architecture which is a fusion of two U 

Net architectures. The second U Net gets thes the input from the output of the first U Net thereby 
enhancing visibility in foggy or hazy images, addressing critical limitations in existing methods. The 
proposed algorithm exhibits superior performance in PSNR and SSIM compared to CNN, Autoencoder 
and U Net algorithms. In future we will apply the proposed algorithm on real-time quality enhancement 
which can be used for autonomous driving, surveillance systems, and remote sensing applications. 
Additionally, we will improve the performance of the proposed algorithm by using parameter tuning, 
and multi-modal fusion strategies.  
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