

The SQL-Based Geospatial Web Processing Service

Soravis Supavetch and Sanphet Chunithipaisan

Geo-Image Technology Research Unit, Department of Survey Engineering,

Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

p_soravis@hotmail.com, sanphet.c@chula.ac.th

Abstract: Since the OGC promoted the specification of OGC

Web Processing Service (WPS), several researches on the

development of geospatial online service have been happened.

Most of WPSs are developed extending on GIS software or APIs.

Nowadays, most databases are extended to support spatial data

and also provide a number of spatial functions which can be

called through SQL. This paper presents the development of

WPS which uses spatial database as processing engine. Extended

WPS protocol is designed to support SQL to invoke spatial

function. Using SQL eases the modification of WPS regarding

the change of processing function service. Databases tested with

the implemented WPS include Oracle, PostgreSQL and MySQL.

The database type is listed in WPS GetCapabilites document and

allowed to choose for working spatial engine. Thus, users can use

SQL in which they are familiar with the database. The results

from scenario tests clearly show the success of the

implementation of this concept.

Keywords: Web Processing Service, Geospatial Processing

Service, Geospatial Processing Engine, Spatial Database.

I. Introduction

Traditional GIS systems are no longer suitable for modern

distributed, heterogeneous network environments due to the

lack of interoperability, reusability, and flexibility [2]. The

geographic information service is enabled by the advancement

in general web service technology and the efforts of the GIS

industries. Due to the popular use of the Internet and the

dramatic progress of telecommunication technology, the

paradigm of GIS is shifting into a new direction [6], especially

for producing spatial-oriented visualization [5] in personal

devices such as cell phones, PDAs, and smart phones [4]. Until

the Open Geospatial Consortium (OGC), the non-profit,

international, voluntary consensus standards organization is

leading the development of standards for geospatial and

location based services. Several implementation

specifications have been deployed, and some of them are

widely accepted in GIS industries e.g. GML, WMS, WFS, and

WPS. These services open the opportunity to solve the

problems that are typically faced in traditional GIS. The OGC

WFS [8] defines interfaces for data access and manipulation

operations on geographic features. The OGC WMS [10]

specifies the behavior of a service that produces image maps.

The OGC WPS [11] defines a mechanism by which a client

may submit a processing task to server. To implement these

OWSs supporting scientific workflow require services

composition called “web services chaining” [7], “web services

composition”, “web services flow” or “web services

orchestration” [12].

Even though WPS fulfils the gap of transition from old

traditional standalone GIS through service-based architecture,

no real geo-processing capabilities do exist. For reasoning of

ignoring re-implementation an existing GIS function, [1]

developed WPS using GRASS GIS for a processing engine

and open shell script through WPS interface to user for

executing GRASS functions. On our perspective, not only GIS

software can be used as WPS back-end processing engine, but

also spatial database is suitable. Spatial database nowadays

provides numerous spatial functions. In addition, the spatial

functions can be customized or extended through a stored

procedure.

Currently, several relational databases provide spatial

engine to perform several spatial operations which can be used

with stored data through SQL without the need of external GIS

tools. If spatial database can be used as the spatial engine for

the back-end processing of WPS, this will help reduce

workloads for programmer to develop spatial operation tools.

Moreover, if SQL statement can be attached in the request

form, the translation of XML in the request form invoking the

GIS functions can be dismissed since it is directly sent to

spatial database for carrying out the GIS function. It is also

flexible for users to form SQL with knowledge on using

back-end spatial database used in WPS.

This paper reports the implementation of WPS using the

spatial database as the back-end spatial engine for processing

wfs:FeatureCollections data from open WFS site. This

research is an adaptation of our previous research [3] in which

WPS request form is extended to support the additional basic

SQL (SELECT-FROM-WHERE-FILTER) for calling the

processing task from available databases in WPS. Oracle

Spatial, PostGIS and MySQL are databases that are used in

this research.

Next section gives a short insight into WFS, WPS and

Spatial Database. The detail of extended spatial SQL for WPS

request is presented. The developed WPS architecture and

back-end procedural composition are introduced. The

processing capabilities of developed system are described.

The test of implemented service through some scenarios is

demonstrated.

II. Technologies Reviews

A. WFS (Web Feature Service)

WFS enables a client to retrieve geospatial data encoded in

Geography Markup Language (GML) online through HTTP

International Journal of Computer Information Systems and Industrial Management Applications
ISSN 2150-7988 Volume 3 (2011) pp.119-126
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

protocol. It allows for clients and servers of different vendors

or systems to share data without having to convert data

between proprietary formats. WFS server is then a feature

online resource, providing an interface for data access and

manipulation. A request sent to a WFS server is a query (or

transformation operation) for one or more features that can be

delivered by a server. When the WFS receives the request, it

executes the function by the request and sends back the

information to a client. WFS communicates with a client and

allow programs written in different languages and on different

platforms. Interface that is typically used in WFS is defined in

XML.

B. WPS (Web Processing Service)

WPS is designed to standardize the way that GIS calculations

are made available to the Internet. WPS can describe any

calculation (i.e. process) including all of its inputs and outputs,

and triggers its execution as a Web service. WPS supports

simultaneous exposure of processes via HTTP/GET (KVP:

Key Value Pairs) and HTTP/POST (XML-based document),

thus allowing the client to choose the most appropriate

interface mechanism. The specific processes served up by a

WPS implementation are defined by the owner of that

implementation.

C. Spatial Database

Spatial database is a database system which offers spatial data

types in its data model and query language. Most relational

database management systems have supported spatial data

type including point, line and polygon. Some of them include

Oracle, MySQL and PostgreSQL. MySQL has included

spatial extension built in since MySQL 4.1 which supports

data type following OGC simple feature specifications for

SQL, and also provided spatial query tools and supports

spatial indexing using R-tree with quadratic splitting. PostGIS

is used to spatially enable the PostgreSQL to be used as a

backend spatial database. PostGIS uses an R-tree index

implemented on top of GiST (Generalized Search Trees) to

index GIS data. Oracle Spatial is a module option for Oracle

that provides advanced spatial features to support GIS

solutions. OGC simple feature is supported since Oracle 10g.

An R-tree or quad tree index can be used in Oracle for spatial

data index.

III. Extend Spatial SQL for WPS

SQL as processing command is the main idea of this research

to explore processing capabilities of spatial database to

web-based user. An SQL base syntax

SELECT-FROM-WHERE clause is applied to

SELECT-FROM-WHERE-FILTER for WPS user request.

Extended SQL is designed for user to send a request statement

to WPS which enable user to define a GetFeature from WFS

site with processing simultaneously. Processing functions are

available in our WPS coming from spatial database. The

pattern of designed SQL statement is shown in the following

section.

A. Processing Clause

Only SELECT clause from database SQL is un-extended. User

can use spatial functions e.g., SDO_CS, SDO_GEOM,

SDO_LRS or SDO_UTIL package subprograms from Oracle,

ST_Buffer, ST_DWithin, ST_Transform,

ST_Line_Interpolate_Point functions from PostGIS, or

functions from MySQL, to process features from WFS site.

Another advantage of using spatial database as processing

engine is that user can customize additional function

embedded to database through stored procedure. More

developed algorithms can be plugged into service. The

processing function in SELECT clause is not limited in one

function per request but user can request numerous examples.

For example SELECT ST_Buffer(ST_Transform(…) , 100),

ST_Buffer(ST_Transform(…) , 200) to retrieve two different

buffered polygons from single original polygon within

coordinates already transformed.

B. Data Retrieving Clause

This processing service provides only processing functions

without any provided features. Processing features must

retrieve from WFS site. We extended an SQL in FROM clause

to express WFS site and attaching FILTER clause for defining

filter condition. The address of WFS site is located in the

FROM clause. The layer name is defined after the address

separated by #. The address and the layer name are both

encoded together inside <?--?> tag. For filtering condition,

user can express OGC Filter Encoding like SQL. We use CQL

filter (Common Query Language) from GeoTools

(http://www.geotools.org) to wrap FE (Filter Encoding) [9]

expression. The following table is examples of CQL filter

comparing with OGC FE syntax.

CQL Filter Encoding

L.NAME = ‘LAND01’ <PropertyIsEqualsTo/>

L.NAME <> ‘LAND01’ <PropertyIsNotEqualsTo/>

L.AREA > 100 <PropertyIsGreaterThan/>

BBOX(GEOM,

10,20,30,40)
<BBOX />

CONTAINS(GEOM, …) <Contains/>

INTERSECT(GEOM, …) <Intersect/>

Table 1. A Comparison of CQL Filter and OGC Filter

Encoding

Syntax Rules

INSERT, UPDATE and DELETE clauses are not allowed

for this service. User only use SELECT clause to request a

processing function. The structure of extended SQL statement

is as follows:

 SELECT <Processing Function>

 FROM <WFS Site>

 WHERE <Processing Condition>

 FILTER <CQL Filter>

An expression in the SELECT clause is a native SQL

120 Supavetch and Chunithipaisan

statement according to selected spatial database by user.

FROM clause is defined for specifying WFS URL and the

name of feature type. WHERE clause is an option for defining

a processing condition. The filter encoding which is used in

diverted WFS request is after the FILTER clause. The

following statement is used to demonstrate the sample of

requested SQL to different processing engine.

SELECT L.NAME,

 SDO_GEOM.RELATE(L.SHAPE,’determine’,

 SDO_UTIL.FROM_WKTGEOMETRY(

 ‘POLYGON((

 101.86 14.81,101.86 14.92,101.97 14.92

 ,101.86 14.81))’),0.1) AS RELATIONSHIP

FROM <?http://localhost/geoserver/wfs#nesdb:LAND?>

FILTER NAME = ‘LAND01’

SELECT L.NAME,

 MBROverlaps(L.SHAPE,’determine’,

 GeomFromText(‘POLYGON((

 101.86 14.81,101.86 14.92,101.97 14.92

 ,101.86 14.81))’),0.1) AS RELATIONSHIP

FROM <?http://localhost/geoserver/wfs#nesdb:LAND?>

FILTER NAME = ‘LAND01’

The first example is to evaluate the polygon relationship

between the land parcel ‘Land01’ which is queried from

another WFS and the defined polygon. Such processing

occurrs in Oracle database. The second example is the same

question as the first example, but the spatial engine used is

MySQL database.

IV. A WPS ARCHETECTURE

The developed WPS used existing spatial database, Oracle

Spatial, MySQL and PostgreSQL, as a spatial engine. Several

tools were developed for many purposes, e.g., to support

extended SQL request form, to connect and retrieve data from

other WFS sites and to manage and manipulate collected GML

data. The architecture of the service system is shown in

Figure 1.

Figure 1. Online processing service frame work.

When the user send the request via HTTP GET or POST

with KVP encoding which is a designed statement including

SQL for processing function, SQL parser will interpret and

extract a WFS data source and SQL statement from the user

request to form a WFS request. WFS requester will send such

request to WFS site to get data in GML format. Once GML

stream is responded back from WFS site, the data importer

will transfer that received data into the database store. After

that, the processing invoker will send the SQL command to the

spatial database to call spatial processing functions. The result

set from spatial database will be parsed to a data transformer

for converting result set to user defined output format: GML or

JSON (JavaScript Object Notation).

The sequence diagram of above processing tasks is

demonstrated as follows:

SQL Parser

WFS Requester

Data Importer

Processing Invoker

Data Transformer

Processing engine

Engine

WFS

Server

WPS interface

Request

Response

SQL Statement

HTTP GET / POST

with KVP encoding

GML / JSON

Internet

121The SQL-Based Geospatial Web Processing Service

Figure 2. Online query and processing service (OQPS)

sequence diagram

A. SQL Parser

An SQL Parser component is the most importance part of the

service. Every incoming SQL composes of two conditions i.e.,

data retrieving condition and data processing condition. Data

requests from FORM and FILTER clause will be re-encoded

in WFS request protocol in order to parse to WFS data source.

Data that are retrieved from WFS site will be stored in ad hoc

database table. The user requests statement is then reformed

into database native SQL for sending to user defined database

to invoke spatial operation.

 SELECT <Processing Functions>

 FROM <URL#TypeName>

 WHERE <Processing Condition>

 FILTER <CQL Filter>

 SELECT <Processing Functions>

 FROM <Temporary table>

 WHERE <Processing Condition>

Figure 3. Recomposing requested SQL.

B. WFS Requester

WFS Requester is to establish the connection to other WFS

site for sending a request and retrieving a response in GML.

Before importing retrieved features to database, WFS

Requester establishes the connection through GetCapabilities

and GetDescribeFeatureType for evaluating feature schemas

and spatial reference system for spatial database table

preparation. Information from GetCapabilities and

GetDescriveFeatureType are necessary for creating metadata

of feature table in spatial database. The working sequence of

WFS Requester with other related components of the system is

shown in Figure 4.

Figure 4. Preparation diagram for temporal feature

importation.

C. Data Importer

Data Importer imports data from WFS requester into prepared

table for ad-hoc dataset to be used in the processing task later.

Data Importer transforms GML feature members into SQL

insert statement and performs execution. For using Oracle

database, after data inserted into table, Data Importer will

invoke creating spatial index statement (Oracle also requires

spatial index for performing spatial query and processing).

D. Processing Invoker

Processing Invoker will send a recomposed SQL statement

from SQL Parser to database for carrying out spatial

processing operation.

E. Data Transformer

The resulting set from the output of spatial database will be

transformed in GML or JSON (upon the user request) which is

done by using the Data Transformer tool. The features

attributes result is identified and extracted from the user

request statement in SELECT clause. The attribute which

comes from the processing operation is defined using alias

WFS Requester Data Importer WFS Database

GetDescribeFeatureType

GetCapabilities

Metadata

Create Spatial Metadata,

Create Temp Table

GetFeature

WKT Features

Bounding Box, Spatial Reference System

Feature Type

Features Data

Import Features

Table ready

Import Success

Features ready

for processing

Request for processing task

(sql , database name)

Request for retrieving data

(WFS and Filter Encoding)

Feature data (gml)

Ad hoc data

:Client :WPS :Database :WFS Server

Success

Features data

Processed data

Processing

Executing SQL

Requested SQL

122 Supavetch and Chunithipaisan

name (defined using AS …). The following example

demonstrates the GML result from database execution

according to a user request statement.

SELECT SDO_GEOM.SDO_LENGTH(

 SDO_AGGR_CONCAT_LINES(THE_GEOM),0.05)

 AS RD_LENGTH,

 RDLNNAMT,

 SDO_UTIL.TO_GMLGEOMETRY(

 SDO_AGGR_CONCAT_LINES(THE_GEOM))

 AS THE_GEOM

FROM <?http://161.200.86.131/geoserver/wfs#cuwps:mainroad?>

GROUP BY RDLNNAMT

FILTER MAINROAD_I = 78230

Figure 5. GML result.

From the above example, RD_LENGTH and THE_GEOM

are used as alias names of feature attributes with the attribute

data coming from the processing operations, whereas,

RDLNNAMT is the attribute which already come from the

requested WFS and can be directly put in GML.

Another format, JSON, is also supported in the Data

Transformer tool. This type of output can be directly used in

client side application which JavaScript is supported, e.g.

OpenLayers and GeoExt. JSON data is encoded in the format

so-called JavaScript array object which is used to store

multiple values in a single variable. Some JavaScript library

can benefits from JSON format for data visualization by

rendering data in table form, for example, Ext.data.ArrayStore

class in Ext. The following example shows the output in JSON

format from the same user request statement.

 SELECT SDO_GEOM.SDO_LENGTH(…)

 AS RD_LENGTH,

 RDLNNAMT,

 SDO_UTIL.TO_WKTGEOMETRY(

 SDO_AGGR_CONCAT_LINES(…))

 AS THE_GEOM

 FROM <?...?>

 FILTER …

[<string: RD_LENGTH>,<string:RDLNNAMT>,<string:WKT>]

Figure 6. Additional JSON output format.

V. PROCESSING CAPABILITIES

The implemented service information and detail is available

at http://161.200.86.131/cuwps/wps.jsp which provides a link

to access GetCapabilities and DescribeProcess operations.

The processing functions available in the system can be

checked through GetCapabilities operation. There is only one

type of processing function available in the system, called

SQL_PROCESSING, since the spatial operations can be

freely defined by user in SQL statements depending on which

database is used. The following example demonstrates the

GetCapabilities document which is encoded in XML.

<ProcessDescription processVersion=“1” … >

 <cuwps:Identifier>SQL_PROCESSING

 </cuwps:Identifier>

 <cuwps:Title>

 SQL expression for a processing task …

 </cuwps:Title>

 …

</ProcessDescription>

User can use any SQL statement in which database that the

user is familiar with. The detail of using the SQL_Processing

service is found at DescribeProcess operation. It describes the

parameters that have to be sent to the service, the type and

value of parameters to be defined, and the output type of

response value. The example of DescribeProcess document of

SQL_Processing is shown as follows:

<DataInputs>

 <Input minOccurs=“1” maxOccurs=“1”>

 <cuwps:Identifier>SQL</cuwps:Identifier>

 <cuwps:Title>SQL statement</cuwps:Title>

 <cuwps:Abstract>SQL statement

 </cuwps:Abstract>

 <LiteralData>

 <cuwps:DataType ows:reference=”xs:string”/>

 <cuwps:AllowedValues>

 <cuwps:Value/>

 </cuwps:AllowedValues>

 </LiteralData>

</Input>

<Input minOccurs=“1” maxOccurs=“1”>

 <cuwps:Identifier>DATABASE</cuwps:Identifier>

 <cuwps:Title>Database name</cuwps:Title>

 <cuwps:Abstract>Database name

 </cuwps:Abstract>

 <LiteralData>

 <cuwps:DataType ows:reference=”xs:string”/>

 <cuwps:AllowedValues>

 <cuwps:Value>ORACLE_10G</cuwps:Value>

 <cuwps:Value>MYSQL_5</cuwps:Value>

 <cuwps:Value>POSTGIS_8_4</cuwps:Value>

 </cuwps:AllowedValues>

 </LiteralData>

</Input>

</DataInputs>

<ProcessOutputs>

 <Output>

 <cuwps:Identifier>GML2</cuwps:Identifier>

123The SQL-Based Geospatial Web Processing Service

 <cuwps:Title>GML document version

 2.0</cuwps:Title>

 <cuwps:Abstract>GML document from processing

 features </cuwps:Abstract>

 </Output>

 <Output>

 <cuwps:Identifier>JSON</cuwps:Identifier>

 <cuwps:Title>Array of processing

 result</cuwps:Title>

 <cuwps:Abstract>Javascript

 arrays</cuwps:Abstract>

 </Output>

 <ComplexOutput>

 <Default>

 <Format>

 <MimeType>text/xml </MimeType>

 <Schema>http://161.200.86.131/cuwps/

 schemas/gml/2.1.2/gml.xsd</schema>

 …</ProcessOutputs>

As shown above, user has to define the type of database to

be used for processing function by defining the value for the

DATABASE identifier: ORACLE_10G, MYSQL_5 or

POSTGIS_8_4. User put the SQL statement that matches the

SQL with defined database and follows the designed SQL

syntax. There are two types of output that can be chosen

including GML2 and JSON. The default output type is

GML2.

VI. SERVICE TESTING AND SAMPLE

APPLICATION

We developed demo client application through our web site

(http://161.200.86.131/cuwps/demo_wps.jsp) for showing

facilities of using extended SQL from spatial database for

processing features from WFS site by CUWPS

(Chulalongkorn University Web Processing Service).

Figure 7. CUWPS web site (http://161.200.86.131/cuwps/).

Figure 8. Demo client application using OpenLayers to

visualize result (http://161.200.86.131/cuwps/demo_wps.jsp).

Some scenarios were set up in order to test the concept of

this implementation and the developed system. The WFS was

set up using GeoServer with the data of Bangkok Metropolitan

Administration (BMA) including road and district layers.

The first scenario is to demonstrate the use of Linear

Referencing System (LRS) function available from Oracle

Spatial to generate a 50-meter buffer around the road segment

from 100 meters to 200 meters from the starting point of

MAINROAD_I = 77752. The encoding for the

STATEMENT and visualized result are shown as follows

respectively:

SELECT SDO_UTIL.TO_WKTGEOMETRY(

 SDO_LRS.CONVERT_TO_STD_GEOM(

 SDO_GEOM.SDO_BUFFER (

 SDO_LRS.DYNAMIC_SEGMENT(

 SDO_LRS.CONVERT_TO_LRS_GEOM(

 SDO_CS.TRANSFORM(THE_GEOM,4326)),

 100,200,0.001),50,1))) AS THE_GEOM

FROM <?http://161.200.86.131/geoserver/wfs

 #cuwps:mainroad?>

FILTER MAINROAD_I = 77752

Figure 9. Buffered polygon returned from CUWPS by

executing Oracle LRS function.

 The above example uses the Oracle Spatial for

processing service. The requested WFS data will be

downloaded and stored in the database. Once the download

data is in the database, the processing will be carried out on the

ad-hoc data store. The result of the user request will be

returned to the user. Figure 10 and 11 shows the downloaded

data and data result that are stored in the Oracle Spatial

respectively.

124 Supavetch and Chunithipaisan

Figure 10. VIPAVADEE road data by WFS site.

Figure 11. Buffered polygon from CUWPS execution.

The second scenario is to find the area of the queried

polygon from the WFS feature using Oracle Spatial database.

The following example shows the SQL statement for finding

the area of the object from the WFS feature.

SELECT SDO_UTIL.TO_GMLGEOMETRY(

 THE_GEOM) AS THE_GEOM,

 SDO_GEOM.SDO_AREA(THE_GEOM,10)

 AS DISTRICT_AREA

FROM <?http://161.200.86.131/geoserver/wfs

 #cuwps:bma_admin_poly?>

FILTER ID0 = 1013

The third scenario demonstrates how to find the centroid of

the queried polygon. The following example shows the SQL

statement to find the centroid of the district with ID0 1013

from WFS.

SELECT ID, AsText(Centroid(the_geom))

 AS THE_GEOM , POP_YEAR41 ,

 DENSITY41 , POP41_MEN

 ,WOMEN, TOTAL41

FROM <?http://161.200.86.131/geoserver/wfs

 #cuwps:bma_admin_poly?>

FILTER ID0 = 1013

The above processing expression is carried out using

PostgreSQL database, and the result is returned in JSON as

shown in Figure 12.

Figure 12. A returned JSON format from CUWPS.

VII. A COMPLEX FEATURE PROCESSING

SERVICE DEMONSTRATION APPLICATION

To emphasize benefits of using spatial database for WPS

implementation, the complex feature model like road network

was selected for a demonstration. The network model e.g.,

node, link and path is complex to exchange over the web for

processing through other WPS due to requiring a specific

functions for accessing and processing. The PL/SQL

sub-programs i.e., SHORTEST_PATH, TSP_PATH (Travel

Sale Man Problem) are designed for user request and user can

also refer to other WFS site for the data which requires

processing with the road network through extended SQL. The

Oracle database is selected for use as spatial engine. The

Bangkok road network is imported to Oracle and ready to

perform a processing by user. The following figures are

examples of predefined functions i.e., SHORTEST_PATH

and TSP_PATH encoded in request SQL form.

Shortest Path

SELECT SDO_UTIL.TO_WKTGEOMETRY(

 SDO_GEOM.SDO_BUFFER(

 SDO_CS.TRANSFORM(

 SHORTEST_PATH('MAINROAD',1005,706)

 ,4326) ,200,0.001))

FROM DUAL

Figure 13. Buffered LineString from shortest path.

125The SQL-Based Geospatial Web Processing Service

Travel Sale Man Problem

SELECT SDO_UTIL.TO_WKTGEOMETRY(

 SDO_CS.TRANSFORM(

 TSP_PATH('MAINROAD',

 SDO_NUMBER_ARRAY(875,897,882,753)

),4326))

FROM DUAL

Figure 14. TSP_PATH (Travel Sale Man Problem) function

visualized result.

VIII. CONCLUSION

This paper introduces the concept of applying spatial

database and using SQL for extending the capabilities of WPS

implementation. The data source from WFS site is designed as

a parameter in the outlined SQL. The scenario tests show the

benefit that user can process geospatial data from other WFS

site using common SQL of which database user familiar with.

 This WPS framework implements OGC WPS interface

without any spatial functions implementation. User can change

the execution engine (database) to a new version or others

database software. Additionally, this research method can be

used to solve a lack of features filtering in WPS (in standard

specification, WPS does not necessary provide Filter

Encoding) in which the filtering statement can be expressed in

WHERE clause, for extracting the processed result.

Thus, all the scenarios demonstrate the benefits of the

processing service on data which come from external data

source through WFS which using the power of spatial

database. The supporting processing service using multiple

WFS data sources is the main issue of this research for further

work.

Acknowledgments

This research was supported by the Ratchadaphisek Somphot

Endownment Grants from Chulalongkorn University.

References

Author Biographies

Soravis Supavetch received his B.Eng degree in Survey Engineering from

Chulachomklao Royal Military Academy and M.S. (Forestry) degree from

Kasetsart University, Thailand. He is currently a PhD candidate in Survey

Engineering at Chulalongkorn University, Thailand and currently attached to

Royal Thai Survey Department. His area of interest includes service oriented

architecture and geospatial processing service in geospatial information

system.

Sanphet Chunithipaisan received his B.Eng and M.Eng degree in Survey

Engineering from Chulalongkorn University, Thailand. He holds a PhD in

Geomatics from University of Newcastle upon Tyne, UK. He is currently

working as Assistant Professor in Department of Survey Engineering at

Chulalongkorn University. His area of interest includes spatial database and

data interoperability in geospatial information system.

126 Supavetch and Chunithipaisan

[1] Brauner, J., and Schaeffer, B. “Integration of GRASS

Functionality in Web based SDI Service Chains.” Free
and Open Source Software for Geospatial conference,
Barcelona, Spain, 2008.

[2] Chen, L., Xiujun, M., Guanhua, C., Yanfeng, S., and
Xuebing, F. "A Peer-to-Peer Architecture for Dynamic

Executing GIS Web Service Composition." IEEE
International Geoscience and Remote Sensing
Symposium, Seoul, Korea (South), 2005.

[3] Chunithipaisan, S., and Supavetch, S. “The
Development of Web Processing Service Using the
Power of Spatial Database.” International Conference
on Emerging Trends in Engineering and Technology
(ICETET), Nagpur, India, 2009.

[4] Echtibi, A., Zemerly, M.J., and Berri, J. “A
Service-Based Mobile Tourist Advisor.” International
Journal of Computer Information Systems and
Industrial Management Application (IJCISIM), (2009):
177-187.

[5] Goodchild, M. F. “The Use Cases of Digital Earth.”
International Journal of Digital Earth, 1(1), (2008):
31-42.

[6] Guanhua, C., Kunqing, X., Xiujun, M., Yanfeng, S.,
Yuanzhi, Z., and Lebin, S. "G-WSDL: A
Data-Oriented Approach to Model GIS Web
Services." IEEE International Geoscience and Remote
Sensing Symposium, Seoul, Korea (South), 2005.

[7] Nadine, A. "Chaining Geographic Information Web
Services." IEEE Internet Computing, 7(5), (2003):
22-29.

[8] Open Geospatial Consortium Inc., “OpenGIS Web
Feature Service (WFS) Implementation
Specification.” Version 1.1.0, Document number OGC
04-094, 2005(a).

[9] Open Geospatial Consortium Inc., “OpenGIS Filter
Encoding Implementation Specification.” Version
1.1.0, Document number OGC 04-095, 2005(b).

[10] Open Geospatial Consortium Inc., “OpenGIS Web
Map Service Implementation Specification.” Version
1.3.0, Document number OGC 06-042, 2006.

[11] Open Geospatial Consortium Inc., “OpenGIS Web
Processing Service,” Version 1.0.0, Document number
OGC 05-007r7, 2007.

[12] Peltz, C. “Web Services Orchestration and
Choreography.” In Computer, vol. 36, no. 10, 46-52,
IEEE Computer Society, 2003.

