Customer Success Analysis and Modeling in Digital Marketing
Keywords:
Digital Marketing, CRM, Time Series, Machine LearningAbstract
Digital Marketing sets a sequence of strategies responsible for maximizing the interaction between companies and their target audience. One of them, known as Customer Success, establishes long-term techniques capable of projecting the sustainable value of a given customer to a company, monitoring the indexers that translate its activities. Therefore, this paper intends to address the need to develop an innovative tool that allows the creation of a temporal knowledge base composed of the behavioral evolution of customers. The CRISP-DM model benefits the processing and modeling of data capable of generating knowledge through the application and combination of the results obtained by machine learning algorithms specialized in time series. Time Series K-Means allows the clustering and differentiation of consumers characterized by their similar habits. Through the formulation of profiles, it is possible to apply forecasting methods that predict the following trends. The proposed solution provides the understanding of time series that profile the flow of customer activity and the use of the evidenced dynamics for the future prediction of these behaviors.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 International Journal of Computer Information Systems and Industrial Management Applications
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.