Detecting near duplicate dataset with machine learning
Keywords:
Machine Learning ,Entity Resolution, Record Linkage, Data Quality, Data Integration, Data ProfilingAbstract
This paper introduces the concept of near duplicate dataset, a quasi-duplicate version of a dataset. This version has undergone an unknown number of row and column insertions and deletions (modifications on schema and instance). This concepts is interesting for data exploration, data integration and data quality. To formalise these insertions and deletions, two parameters are introduced. Our technique for detecting these quasi-duplicate datasets is based on features extraction and machine learning. This method is original because it does not rely on classical techniques of comparisons between columns but on the comparison of metadata vectors summarising the datasets. In order to train these algorithms, we introduce a method to artificially generate training data. We perform several experiments to evaluate the best parameters to use when creating training data and the performance of several classifiers. In the studied cases, these experiments lead us to an accuracy rate higher than 95%.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 International Journal of Computer Information Systems and Industrial Management Applications
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.